Подпишись и читай
самые интересные
статьи первым!

Значение вероятности события может быть. Вероятность события

Теория вероятности - довольно обширный самостоятельный раздел математики. В школьном курсе теория вероятности рассматривается очень поверхностно, однако в ЕГЭ и ГИА имеются задачи на данную тему. Впрочем, решать задачи школьного курса не так уж сложно (по крайней мере то, что касается арифметических операций) - здесь не нужно считать производные, брать интегралы и решать сложные тригонометрические преобразования - главное, уметь обращаться с простыми числами и дробями.

Теория вероятности - основные термины

Главные термины теории вероятности - испытание, исход и случайное событие. Испытанием в теории вероятности называют эксперимент - подбросить монету, вытянуть карту, провести жеребьевку - все это испытания. Результат испытания, как вы уже догадались, называется исходом.

А что же такое случайность события? В теории вероятности предполагается, что испытание проводится ни один раз и исходов много. Случайным событием называют множество исходов испытания. Например, если вы бросаете монету, может произойти два случайных события - выпадет орел или решка.

Не путайте понятия исход и случайное событие. Исход - это один результат одного испытания. Случайное событие - это множество возможных исходов. Существует, кстати, и такой термин, как невозможное событие. Например, событие "выпало число 8" на стандартном игровом кубике является невозможным.

Как найти вероятность?

Все мы примерно понимаем, что такое вероятность, и довольно часто используем данное слово в своем лексиконе. Кроме того, мы можем даже делать некоторые выводы относительно вероятности того или иного события, например, если за окном снег, мы с большой вероятностью можем сказать, что сейчас не лето. Однако как выразить данное предположение численно?

Для того чтобы ввести формулу для нахождения вероятности, введем еще одно понятие - благоприятные исход, т. е. исход, который является благоприятным для того или иного события. Определение довольно двусмысленное, конечно, однако по условию задачи всегда понятно, какой из исходов благоприятный.

Например: В классе 25 человек, трое из них Кати. Учитель назначает дежурной Олю, и ей нужен напарник. Какова вероятность того, что напарником станет Катя?

В данном примере благоприятный исход - напарник Катя. Чуть позже мы решим эту задачу. Но сначала введем с помощью дополнительного определения формулу для нахождения вероятности.

  • Р = А/N, где P - вероятность, A - число благоприятных исходов, N - общее количество исходов.

Все школьные задачи крутятся вокруг одной этой формулы, и главная трудность обычно заключается в нахождении исходов. Иногда их найти просто, иногда - не очень.

Как решать задачи на вероятность?

Задача 1

Итак, теперь давайте решим поставленную выше задачу.

Число благоприятных исходов (учитель выберет Катю) равно трем, ведь Кать в классе три, а общих исходов - 24 (25-1, ведь Оля уже выбрана). Тогда вероятность равна: P = 3/24=1/8=0,125. Таким образом, вероятность того, что напарником Оли окажется Катя, составляет 12,5%. Несложно, правда? Давайте разберем кое-что посложней.

Задача 2

Монету бросили два раза, какова вероятность выпадения комбинации: один орел и одна решка?

Итак, считаем общие исходы. Как могут выпасть монеты - орел/орел, решка/решка, орел/решка, решка/орел? Значит, общее число исходов - 4. Сколько благоприятных исходов? Два - орел/решка и решка/орел. Таким образом, вероятность выпадения комбинации орел/решка равна:

  • P = 2/4=0,5 или 50 процентов.

А теперь рассмотрим такую задачу. У Маши в кармане 6 монет: две - номиналом 5 рублей и четыре - номиналом 10 рублей. Маша переложила 3 монеты в другой карман. Какова вероятность того, что 5-рублевые монеты окажутся в разных карманах?

Для простоты обозначим монеты цифрами - 1,2 - пятирублевые монеты, 3,4,5,6 - десятирублевые монеты. Итак, как могут лежать монеты в кармане? Всего есть 20 комбинаций:

  • 123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456.

На первый взгляд может показаться, что некоторые комбинации пропали, например, 231, однако в нашем случае комбинации 123, 231 и 321 равнозначны.

Теперь считаем, сколько у нас благоприятных исходов. За них берем те комбинации, в которых есть либо цифра 1, либо цифра 2: 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256. Их 12. Таким образом, вероятность равна:

  • P = 12/20 = 0,6 или 60%.

Задачи по теории вероятности, представленные здесь, довольно простые, однако не думайте, что теория вероятности - это простой раздел математики. Если вы решите продолжать образование в вузе (за исключением гуманитарных специальностей), у вас обязательно будут пары по высшей математике, на которых вас ознакомят с более сложными терминами данной теории, и задачи там будут куда сложнее.

Теория вероятностей - это математическая наука, изучающая закономерности случайных событий. Вероятностным экспериментом (испытанием, наблюдением) называется эксперимент, результат которого нельзя предсказать заранее. В данном эксперименте любой его результат (исход) является событием.

Событие может быть достоверным (всегда происходит в результате испытания); невозможным (заведомо не происходит при испытании); случайным (может произойти или не произойти в условиях данного эксперимента).

Событие, которое нельзя разбить на более простые события, называется элементарным. Событие, представленное в виде совокупности нескольких элементарных событий, называется сложным (фирма не понесла убытки – прибыль может быть положительной либо равной нулю).

Два события, которые не могут происходить одновременно (увеличение налогов – рост располагаемого дохода; увеличение объема инвестиций – снижение уровня риска), называются несовместными.

Иными словами, два события несовместны, если появление одного из них исключает появление другого. В противном случае они являются совместными (увеличение объема продаж – увеличение прибыли). События называются противоположными, если одно из них происходит тогда и только тогда, когда не происходит другое (товар реализован – товар не реализован).

Вероятность события – это численная мера, которая вводится для сравнения событий по степени возможности их появления.

Классическое определение вероятности. Вероятностью Р (А ) события А называется отношение числа m равновозможных элементарных событий (исходов), благоприятствующих появлению события А , к общему числу n всех возможных элементарных исходов данного эксперимента:

Из вышеизложенного вытекают следующие основные свойства вероятности:

1. 0 £ Р (А ) £ 1.

2. Вероятность достоверного события А равна 1: Р (А ) = 1.

3. Вероятность невозможного события А равна 0: Р (А ) = 0.

4. Если события А и В несовместны, то Р (А + В ) = Р (А ) + Р (В ); если же события А и В совместны, то Р (А + В ) = Р (А ) + Р (В ) - Р (А . B). (Р (А . B) – вероятность совместного появления этих событий).

5. Если А и противоположные события, то Р () = 1 - Р (А ).

Если вероятность осуществления одного события не изменяет вероятности появления другого, то такие события называются независимыми.

При непосредственном вычислении вероятностей событий, характеризующихся большим числом исходов, следует пользоваться формулами комбинаторики . Для исследования группы событий (гипотез)

применяются формулы полной вероятности, Бейеса и Бернулли (n независимых испытаний – повторение опытов) .

При статистическом определении вероятности события А под n понимается полное число фактически проведенных испытаний, в которых событие А встретилось ровно m раз. В этом случае отношение m /n называется относительной частотой (частостью) W n (A ) появления события А в n произведенных испытаниях.


При определении вероятности по методу экспертных оценок под n понимается количество экспертов (специалистов в данной области), опрашиваемых на предмет возможности осуществления события А . При этом m из них утверждают, что событие А произойдет.

Понятия случайного события недостаточно для описания результатов наблюдений величин, имеющих числовое выражение. Например, при анализе финансового результата предприятия в первую очередь интересуются его размерами. Поэтому понятие случайного события дополняется понятием случайной величины.

Под случайной величиной (СВ) понимается величина, которая в результате наблюдения (испытания) принимает одно из возможного множества своих значений, заранее неизвестное и зависящее от случайных обстоятельств. Для каждого элементарного события СВ имеет единственное значение.

Различают дискретные и непрерывные СВ. Для дискретной СВ множество ее возможных значений конечно или счетно, т. е. СВ принимает отдельные изолированные значения, которые могут быть заранее перечислены, с определенными вероятностями. Для непрерывной СВ множество ее возможных значений бесконечно и несчетно, например, все числа данного интервала, т.е. возможные значения СВ не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Примеры случайных величин: Х - ежедневное число покупателей в супермаркете (дискретная СВ); Y - число детей, родившихся в течение суток в определенном административном центре (дискретная СВ); Z - координата точки попадания артиллерийского снаряда (непрерывная СВ).

Многие СВ, рассматриваемые в экономике, имеют настолько большое число возможных значений, что их удобнее представлять в виде непрерывных СВ. Например, курсы валют, доход населения и т. п.

Для описания СВ необходимо установить соотношение между всеми возможными значениями СВ и их вероятностями. Такое соотношение будет называться законом распределения СВ . Для дискретной СВ его можно задать таблично, аналитически (в виде формулы) либо графически. Например, таблично для СВ Х

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле.

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность (вероятность события) наступления интересующего нас события от того, как развиваются остальные события. В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события? Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события. События А и В называются независимыми, если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы. Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример 1 . Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р1*р2=0,56. Что произойдет с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример 2. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается. Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).

Эта схема очень удобна для анализа последовательных случайных событий. Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример 3. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.


По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045. Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля. И все-таки польза от наших оценок есть. Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные. Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять. Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример 3. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов. Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение.

Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.


Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает. Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки.

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных. Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).


2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшегомесяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

1.1. Некоторые сведения из комбинаторики

1.1.1. Размещения

Рассмотрим простейшие понятия, связанные с выбором и расположением некоторого множества объектов.
Подсчет числа способов, которыми можно совершить эти действия, часто производится при решении вероятностных задач.
Определение . Размещением из n элементов по k (k n ) называется любое упорядоченное подмножество из k элементов множества, состоящего из n различных элементов.
Пример. Следующие последовательности цифр являются размещениями по 2 элемента из 3 элементов множества {1;2;3}: 12, 13, 23, 21, 31, 32.
Заметим, что размещения отличаются порядком входящих в них элементов и их составом. Размещения 12 и 21 содержат одинаковые цифры, но порядок их расположения различен. Поэтому эти размещения считаются разными.
Число различных размещений из n элементов по k обозначается и вычисляется по формуле:
,
где n ! = 1∙2∙...∙(n - 1)∙ n (читается «n – факториал»).
Число двузначных чисел, которые можно составить из цифр 1, 2, 3 при условии, что ни одна цифра не повторяется равно: .

1.1.2. Перестановки

Определение . Перестановками из n элементов называются такие размещения из n элементов, которые различаются только расположением элементов.
Число перестановок из n элементов P n вычисляется по формуле: P n =n !
Пример. Сколькими способами могут встать в очередь 5 человек? Количество способов равно числу перестановок из 5 элементов, т.е.
P 5 =5!=1∙2∙3∙4∙5=120.
Определение . Если среди n элементов k одинаковых, то перестановка этих n элементов называется перестановкой с повторениями.
Пример. Пусть среди 6 книг 2 одинаковые. Любое расположение всех книг на полке - перестановка с повторениями.
Число различных перестановок с повторениями (из n элементов, среди которых k одинаковых) вычисляется по формуле: .
В нашем примере число способов, которыми можно расставить книги на полке, равно: .

1.1.3. Сочетания

Определение . Сочетаниями из n элементов по k называются такие размещения из n элементов по k , которые одно от другого отличаются хотя бы одним элементом.
Число различных сочетаний из n элементов по k обозначается и вычисляется по формуле: .
По определению 0!=1.
Для сочетаний справедливы следующие свойства:
1.
2.
3.
4.
Пример. Имеются 5 цветков разного цвета. Для букета выбирается 3 цветка. Число различных букетов по 3 цветка из 5 равно: .

1.2. Случайные события

1.2.1. События

Познание действительности в естественных науках происходит в результате испытаний (эксперимента, наблюдений, опыта).
Испытанием или опытом называется осуществление какого-нибудь определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз.
Случайным называется событие, которое может произойти или не произойти в результате некоторого испытания (опыта).
Таким образом, событие рассматривается как результат испытания.
Пример. Бросание монеты – это испытание. Появление орла при бросании – событие.
Наблюдаемые нами события различаются по степени возможности их появления и по характеру их взаимосвязи.
Событие называется достоверным , если оно обязательно произойдет в результате данного испытания.
Пример. Получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.
Событие называется невозможным , если оно не может произойти в результате данного испытания.
Пример. Извлечение из урны белого шара, в которой находятся лишь цветные (небелые) шары, есть событие невозможное. Отметим, что при других условиях опыта появления белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.
Далее случайные события будем обозначать большими латинскими буквами A,B,C... Достоверное событие обозначим буквой Ω, невозможное – Ø.
Два или несколько событий называются равновозможными в данном испытании, если имеются основания считать, что ни одно из этих событий не является более возможным или менее возможным, чем другие.
Пример. При одном бросании игральной кости появление 1, 2, 3, 4, 5 и 6 очков - все это события равновозможные. Предполагается, конечно, что игральная кость изготовлена из однородного материала и имеет правильную форму.
Два события называются несовместными в данном испытании, если появление одного из них исключает появление другого, и совместными в противном случае.
Пример. В ящике имеются стандартные и нестандартные детали. Берем на удачу одну деталь. Появление стандартной детали исключает появление нестандартной детали. Эти события несовместные.
Несколько событий образуют полную группу событий в данном испытании, если в результате этого испытания обязательно наступит хотя бы одно из них.
Пример. События из примера образуют полную группу равновозможных и попарно несовместных событий.
Два несовместных события, образующих полную группу событий в данном испытании, называютсяпротивоположными событиями .
Если одно из них обозначено через A , то другое принято обозначать через (читается «не A »).
Пример. Попадание и промах при одном выстреле по цели - события противоположные.

1.2.2. Классическое определение вероятности

Вероятность события – численная мера возможности его наступления.
Событие А называется благоприятствующим событию В , если всякий раз, когда наступает событие А , наступает и событие В .
События А 1 , А 2 , ..., А n образуют схему случаев , если они:
1) равновозможны;
2) попарно несовместны;
3) образуют полную группу.
В схеме случаев (и только в этой схеме) имеет место классическое определение вероятности P (A ) события А . Здесь случаем называют каждое из событий, принадлежащих выделенной полной группе равновозможных и попарно несовместных событий.
Если n – число всех случаев в схеме, а m – число случаев, благоприятствующих событию А , то вероятность события А определяется равенством:

Из определения вероятности вытекают следующие ее свойства:
1. Вероятность достоверного события равна единице.
Действительно, если событие достоверно, то каждый случай в схеме случаев благоприятствует событию. В этом случае m = n и, следовательно,

2. Вероятность невозможного события равна нулю.
Действительно, если событие невозможно, то ни один случай из схемы случаев не благоприятствует событию. Поэтому m =0 и, следовательно,

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Действительно, случайному событию благоприятствует лишь часть из общего числа случаев в схеме случаев. Поэтому 0<m <n , а, значит, 0<m /n <1 и, следовательно, 0 < P(A) < 1.
Итак, вероятность любого события удовлетворяет неравенствам
0 ≤ P(A) ≤ 1.
В настоящее время свойства вероятности определяются в виде аксиом, сформулированных А.Н. Колмогоровым.
Одним из основных достоинств классического определения вероятности является возможность вычислить вероятность события непосредственно, т.е. не прибегая к опытам, которые заменяют логическими рассуждениями.

Задачи непосредственного вычисления вероятностей

Задача 1.1 . Какова вероятность появления четного числа очков (событие А) при одном бросании игрального кубика?
Решение . Рассмотрим события А i – выпало i очков, i = 1, 2, …,6. Очевидно, что эти события образуют схему случаев. Тогда число всех случаев n = 6. Выпадению четного числа очков благоприятствуют случаи А 2 , А 4 , А 6 , т.е. m = 3. Тогда .
Задача 1.2 . В урне 5 белых и 10 черных шаров. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым?
Решение . Всего имеется 15 случаев, которые образуют схему случаев. Причем ожидаемому событию А – появлению белого шара, благоприятствуют 5 из них, поэтому .
Задача 1.3 . Ребенок играет с шестью буквами азбуки: А, А, Е, К, Р, Т. Найти вероятность того, что он сможет сложить случайно слово КАРЕТА (событие А).
Решение . Решение осложняется тем, что среди букв есть одинаковые – две буквы «А». Поэтому число всех возможных случаев в данном испытании равно числу перестановок с повторениями из 6 букв:
.
Эти случаи равновозможны, попарно несовместны и образуют полную группу событий, т.е. образуют схему случаев. Лишь один случай благоприятствует событию А . Поэтому
.
Задача 1.4 . Таня и Ваня договорились встречать Новый год в компании из 10 человек. Они оба очень хотели сидеть рядом. Какова вероятность исполнения их желания, если среди их друзей принято места распределять путем жребия?
Решение . Обозначим через А событие «исполнение желания Тани и Вани». 10 человек могут усесться за стол 10! разными способами. Сколько же из этих n = 10! равновозможных способов благоприятны для Тани и Вани? Таня и Ваня, сидя рядом, могут занять 20 разных позиций. В то же время восьмерка их друзей может сесть за стол 8! разными способами, поэтому m = 20∙8!. Следовательно,
.
Задача 1.5 . Группа из 5 женщин и 20 мужчин выбирает трех делегатов. Считая, что каждый из присутствующих с одинаковой вероятностью может быть выбран, найти вероятность того, что выберут двух женщин и одного мужчину.
Решение . Общее число равновозможных исходов испытания равно числу способов, которыми можно выбрать трех делегатов из 25 человек, т.е. . Подсчитаем теперь число благоприятствующих случаев, т.е. число случаев, при которых имеет место интересующее нас событие. Мужчина-делегат может быть выбран двадцатью способами. При этом остальные два делегата должны быть женщинами, а выбрать двух женщин из пяти можно . Следовательно, . Поэтому
.
Задача 1.6. Четыре шарика случайным образом разбрасываются по четырем лункам, каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.
Решение. Общее число случаев n =4 4 . Число способов, которыми можно выбрать одну лунку, где будут три шарика, . Число способов, которыми можно выбрать лунку, где будет один шарик, . Число способов, которыми можно выбрать из четырех шариков три, чтобы положить их в первую лунку, . Общее число благоприятных случаев . Вероятность события:
Задача 1.7. В ящике 10 одинаковых шаров, помеченных номерами 1, 2, …, 10. На удачу извлечены шесть шаров. Найти вероятность того, что среди извлечённых шаров окажутся: а) шар №1; б) шары №1 и №2.
Решение . а) Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь шесть шаров из десяти, т.е.
Найдём число исходов, благоприятствующих интересующему нас событию: среди отобранных шести шаров есть шар №1 и, следовательно, остальные пять шаров имеют другие номера. Число таких исходов, очевидно, равно числу способов, которыми можно отобрать пять шаров из оставшихся девяти, т.е.
Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:
б) Число исходов, благоприятствующих интересующему нас событию (среди отобранных шаров есть шары №1 и №2, следовательно, четыре шара имеют другие номера), равно числу способов, которыми можно извлечь четыре шаров из оставшихся восьми, т.е. Искомая вероятность

1.2.3. Статистическая вероятность

Статистическое определение вероятности используется в случае, когда исходы опыта не являются равновозможными.
Относительная частота события А определяется равенством:
,
где m – число испытаний, в которых событие А наступило, n – общее число произведенных испытаний.
Я. Бернулли доказал, что при неограниченном увеличении числа опытов относительная частота появления события будет практически сколь угодно мало отличаться от некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события. Поэтому, естественно, относительную частоту появления события при достаточно большом числе испытаний называть статистической вероятностью в отличие от ранее введенной вероятности.
Пример 1.8 . Как приближенно установить число рыб в озере?
Пусть в озере х рыб. Забрасываем сеть и, допустим, находим в ней n рыб. Каждую из них метим и выпускаем обратно. Через несколько дней в такую же погоду и в том же месте забрасываем ту же самую сеть. Допустим, что находим в ней m рыб, среди которых k меченных. Пусть событие А – «пойманная рыба мечена». Тогда по определению относительной частоты .
Но если в озере х рыб и мы в него выпустили n меченых, то .
Так как Р * (А ) » Р (А ), то .

1.2.4. Операции над событиями. Теорема сложения вероятностей

Суммой , или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий (в одном и том же испытании).
Сумма А 1 + А 2 + … + А n обозначается так:
или .
Пример . Бросаются две игральные кости. Пусть событие А состоит в выпадении 4 очков на 1 кости, а событие В – в выпадении 5 очков на другой кости. События А и В совместны. Поэтому событие А +В состоит в выпадении 4 очков на первой кости, или 5 очков на второй кости, или 4 очков на первой кости и 5 очков на второй одновременно.
Пример. СобытиеА – выигрыш по 1 займу, событие В – выигрыш по 2 займу. Тогда событие А+В – выигрыш хотя бы по одному займу (возможно по двум сразу).
Произведением или пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий (в одном и том же испытании).
Произведение В событий А 1 , А 2 , …, А n обозначается так:
.
Пример. События А и В состоят в успешном прохождении I и II туров соответственно при поступлении в институт. Тогда событие А ×В состоит в успешном прохождении обоих туров.
Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие А есть попадание точки в область А , а событие В – попадание точки в область В . Тогда событие А+В есть попадание точки в объединение этих областей (рис. 2.1), а событие А В есть попадание точки в пересечение этих областей (рис. 2.2).

Рис. 2.1 Рис. 2.2
Теорема . Если события A i (i = 1, 2, …, n ) попарно несовместны, то вероятность суммы событий равна сумме вероятностей этих событий:
.
Пусть А и Ā – противоположные события, т.е. А + Ā = Ω, где Ω – достоверное событие. Из теоремы сложения вытекает, что
Р(Ω) = Р (А ) + Р (Ā ) = 1, поэтому
Р (Ā ) = 1 – Р (А ).
Если события А 1 и А 2 совместны, то вероятность суммы двух совместных событий равна:
Р (А 1 + А 2) = Р (А 1) + Р (А 2) – Р(А 1 ×А 2).
Теоремы сложения вероятностей позволяют перейти от непосредственного подсчета вероятностей к определению вероятностей наступления сложных событий.
Задача 1.8 . Стрелок производит один выстрел по мишени. Вероятность выбить 10 очков (событие А ), 9 очков (событие В ) и 8 очков (событие С ) равны соответственно 0,11; 0,23; 0,17. Найти вероятность того, что при одном выстреле стрелок выбьет менее 8 очков (событие D ).
Решение . Перейдем к противоположному событию – при одном выстреле стрелок выбьет не менее 8 очков. Событие наступает, если произойдет А или В , или С , т.е. . Так как события А, В , С попарно несовместны, то, по теореме сложения,
, откуда .
Задача 1.9 . От коллектива бригады, которая состоит из 6 мужчин и 4 женщин, на профсоюзную конференцию выбирается два человека. Какова вероятность, что среди выбранных хотя бы одна женщина (событие А ).
Решение . Если произойдет событие А , то обязательно произойдет одно из следующих несовместных событий: В – «выбраны мужчина и женщина»; С – «выбраны две женщины». Поэтому можно записать: А=В+С . Найдем вероятность событий В и С . Два человека из 10 можно выбрать способами. Двух женщин из 4 можно выбрать способами. Мужчину и женщину можно выбрать 6 ×4 способами. Тогда . Так как события В и С несовместны, то, по теореме сложения,
Р(А) = Р(В + С) = Р(В) + Р(С ) = 8/15 + 2/15 = 2/3.
Задача 1.10. На стеллаже в библиотеке в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А ).
Решение . Первый способ. Требование – хотя бы один из трех взятых учебников в переплете – будет осуществлено, если произойдет любое из следующих трех несовместных событий: В – один учебник в переплете, С – два учебника в переплете, D – три учебника в переплете.
Интересующее нас событие А можно представить в виде суммы событий: A=B+C+D . По теореме сложения,
P(A) = P(B) + P(C) + P(D). (2.1)
Найдем вероятность событий B, C и D (см комбинаторные схемы):

Представив эти вероятности в равенство (2.1), окончательно получим
P(A) = 45/91 + 20/91 + 2/91 = 67/91.
Второй способ. Событие А (хотя бы один из взятых трех учебников имеет переплет) и Ā (ни один из взятых учебников не имеет переплета) – противоположные, поэтому P(A) + P(Ā ) = 1 (сумма вероятностей двух противоположных событий равна 1). Отсюда P(A ) = 1 – P(Ā). Вероятность появления события Ā (ни один из взятых учебников не имеет переплета)
Искомая вероятность
P(A ) = 1 – P(Ā ) = 1 – 24/91 = 67/91.

1.2.5. Условная вероятность. Теорема умножения вероятностей

Условной вероятностью Р(В /А ) называется вероятность события В, вычисленная в предположении, что событие А уже наступило.
Теорема . Вероятность совместного появления двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р(А В) = Р(А )∙Р(В /А ). (2.2)
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого, т.е.
Р(А) = Р(А/В ) или Р(В ) = Р(В /А ). (2.3)
Если события А и В независимы, то из формул (2.2) и (2.3) следует
Р(А В) = Р(А )∙Р(В ). (2.4)
Справедливо и обратное утверждение, т.е. если для двух событий выполняется равенство (2.4), то эти события независимы. В самом деле, из формул (2.4) и (2.2) вытекает
Р(А В) = Р(А )∙Р(В ) = Р(А ) ×Р(В /А ), откуда Р(А ) = Р(В /А ).
Формула (2.2) допускает обобщение на случай конечного числа событий А 1 , А 2 ,…,А n :
Р(А 1 ∙А 2 ∙…∙А n )=Р(А 1)∙Р(А 2 /А 1)∙Р(А 3 /А 1 А 2)∙…∙Р(А n /А 1 А 2 …А n -1).
Задача 1.11 . Из урны, в которой 5 белых и 10 черных шаров, вынимают подряд два шара. Найти вероятность того, что оба шара белые (событие А ).
Решение . Рассмотрим события: В – первый вынутый шар белый; С – второй вынутый шар белый. Тогда А = ВС .
Опыт можно провести двумя способами:
1) с возвращением: вынутый шар после фиксации цвета возвращается в урну. В этом случае события В и С независимы:
Р(А) = Р(В )∙Р(С ) = 5/15 ×5/15 = 1/9;
2) без возвращения: вынутый шар откладывается в сторону. В этом случае события В и С зависимы:
Р(А) = Р(В )∙Р(С /В ).
Для события В условия прежние, , а для С ситуация изменилась. Произошло В , следовательно в урне осталось 14 шаров, среди которых 4 белых .
Итак, .
Задача 1.12 . Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.
Решение . Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = А В . Событию А благоприятствуют 3 случая из 50 возможных, т.е. Р(А ) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т.е. Р(В /А ) = 2/49. Следовательно,
.
Задача 1.13 . Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?
Решение . Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т.е. произойдет событие А+В , где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда
Р(А +В )=Р(А )+Р(В )–Р(А В )=0, 7+0, 8–0, 7∙0,8=0,94.
Задача 1.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете.
Решение . Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,
P(A ) = 3/6 = 1/2.
Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т.е. условная вероятность события В , такова: P(B /А) = 2/5.
Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна
P(AB ) = P(A ) ∙ P(B /А) = 1/2·∙ 2/5 = 0,2.
Задача 1.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Решение . Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A ) = 7/10.
Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т.е. условная вероятность события В следующая: P(B/А ) = 6/9 = 2/3.
Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т.е. условная вероятность события С такова: P(C /АВ ) = 5/8.
Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A ) P(B /А ) P(C /АВ ) = 7/10 · 2/3 · 5/8 = 7/24.

1.2.6. Формула полной вероятности и формула Байеса

Пусть B 1 , B 2 ,…, B n – попарно несовместные события (гипотезы) и А – событие, которое может произойти только совместно с одним из них.
Пусть, кроме того, нам известны Р(B i ) и Р(А /B i ) (i = 1, 2, …, n ).
В этих условиях справедливы формулы:
(2.5)
(2.6)
Формула (2.5) называется формулой полной вероятности . По ней вычисляется вероятность события А (полная вероятность).
Формула (2.6) называется формулой Байеса . Она позволяет произвести пересчет вероятностей гипотез, если событие А произошло.
При составлении примеров удобно считать, что гипотезы образуют полную группу.
Задача 1.16 . В корзине яблоки с четырех деревьев одного сорта. С первого – 15% всех яблок, со второго – 35%, с третьего – 20%, с четвертого – 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.
а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие А ).
б) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.
Решение . а) Имеем 4 гипотезы:
B 1 – наугад взятое яблоко снято с 1-го дерева;
B 2 – наугад взятое яблоко снято с 2-го дерева;
B 3 – наугад взятое яблоко снято с 3-го дерева;
B 4 – наугад взятое яблоко снято с 4-го дерева.
Их вероятности по условию: Р(B 1) = 0,15; Р(B 2) = 0,35; Р(B 3) = 0,2; Р(B 4) = 0,3.
Условные вероятности события А :
Р(А /B 1) = 0,99; Р(А /B 2) = 0,97; Р(А /B 3) = 0,98; Р(А /B 4) = 0,95.
Вероятность того, что наудачу взятое яблоко окажется спелым, находится по формуле полной вероятности:
Р(А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)+Р(B 4)∙Р(А /B 4)=0,969.
б) Формула Байеса для нашего случая имеет вид:
.
Задача 1.17. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение . Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: B 1 – белых шаров нет, В 2 – один белый шар, В 3 – два белых шара.
Поскольку всего имеется три гипотезы, и сумма вероятностей гипотез равна 1 (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3,т.е.
P(B 1) = P(B 2) = P(B 3) = 1/3.
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, Р(А /B 1)=1/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, Р(А /B 2)=2/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара Р(А /B 3)=3/ 3=1.
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:
Р (А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)=1/3·1/3+1/3·2/3+1/3·1=2/3.
Задача 1.18 . Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение . Обозначим через А событие – деталь отличного качества. Можно сделать два предположения: B 1 – деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) Р(А /B 1) = 2/3; B 2 – деталь произведена вторым автоматом, причем P(B 2) = 1/3.
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом,Р(А /B 1)=0,6.
Условная вероятность того, что деталь будет отличного качества, если она произведена вторым автоматом,Р(А /B 1)=0,84.
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
Р(А )=Р(B 1) ∙Р(А /B 1)+Р(B 2) ∙Р(А /B 2)=2/3·0,6+1/3·0,84 = 0,68.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

Задача 1.19 . Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Решение . Обозначим через А событие – в каждом из двух испытаний (с возвращением) была извлечена стандартная деталь. Можно сделать три предположения (гипотезы): B 1 – детали извлекаются из первой партии, В 2 – детали извлекаются из второй партии, В 3 – детали извлекаются из третьей партии.
Детали извлекались наудачу из взятой партии, поэтому вероятности гипотез одинаковы:  P(B 1) = P(B 2) = P(B 3) = 1/3.
Найдем условную вероятность Р(А /B 1), т.е. вероятность того, что из первой партии будут последовательно извлечены две стандартные детали. Это событие достоверно, т.к. в первой партии все детали стандартны, поэтому Р(А /B 1) = 1.
Найдем условную вероятность Р(А /B 2), т.е. вероятность того, что из второй партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 2)= 15/20 ∙ 15/20 = 9/16.
Найдем условную вероятность Р(А /B 3), т.е. вероятность того, что из третьей партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 3) = 10/20 · 10/20 = 1/4.
Искомая вероятность того, что обе извлеченные стандартные детали взяты из третьей партии, по формуле Бейеса равна

1.2.7. Повторные испытания

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну ту же вероятность.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна 1–р. Такая вероятностная схема называется схемой Бернулли . Поставим перед собой задачу вычислить вероятность того, что при п испытаниях по схеме Бернулли событие А осуществится ровно k раз (k – число успехов) и, следовательно, не осуществится п– раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Искомую вероятность обозначим Р п (k ). Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.
Поставленную задачу можно решить с помощью так называемой формулы Бернулли, которая имеет вид:
.
Задача 1.20. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р =0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равнар =0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q= 1–р =1–0,75=0,25.
Искомая вероятность по формуле Бернулли равна
.
Задача 1.21 . Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?
Решение . Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2, следовательно, вероятность проигрыша q также равна 1/2. Т.к. во всех партиях вероятность выигрыша постоянна и безразлична, в какой последовательности будут выиграны партии, то применима формула Бернулли.
Найдем вероятность того, что две партии из четырех будут выиграны:

Найдем вероятность того, что будут выиграны три партии из шести:

Т.к. P 4 (2) > P 6 (3), то вероятнее выиграть две партии из четырех, чем три из шести.
Однакоможно видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами и поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Для решения этой проблемы существуют несколько предельных теорем, которые используются для случая большого числа испытаний.
1. Теорема Пуассона
При проведении большого числа испытаний по схеме Бернулли (при n => ∞) и при малом числе благоприятных исходов k (при этом предполагается, что вероятность успеха p мала), формула Бернулли приближается к формуле Пуассона
.
Пример 1.22. Вероятность брака при выпуске предприятием единицы продукции равна p =0,001. Какая вероятность, что при выпуске 5000 единиц продукции из них будет менее 4 бракованных (событие А Решение . Т.к. n велико, воспользуемся локальной теоремой Лапласа:

Вычислим x :
Функция – четная, поэтому φ(–1,67) = φ(1,67).
По таблице приложения П.1 найдем φ(1,67) = 0,0989.
Искомая вероятность P 2400 (1400) = 0,0989.
3. Интегральная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний n , вероятность Р п (k 1 , k 2) появления события A в этих испытаниях от k 1 доk 2 раз приближенно равна
Р п (k 1 , k 2) = Φ (x"" ) – Φ (x" ), где
– функция Лапласа,

Определенный интеграл, стоящий в функции Лапласа не вычисляется на классе аналитических функций, поэтому для его вычисления используется табл. П.2, приведенная в приложении.
Пример 1.24. Вероятность появления события в каждом из ста независимых испытаний постоянна и равна p = 0,8. Найти вероятность того, что событие появится: a) не менее 75 раз и не более 90 раз; б) не менее 75 раз; в) не более 74 раз.
Решение . Воспользуемся интегральной теоремой Лапласа:
Р п (k 1 , k 2) = Φ (x"" ) – Φ(x" ), где Ф(x ) – функция Лапласа,

а) По условию, n = 100, p = 0,8, q = 0,2, k 1 = 75, k 2 = 90. Вычислим x"" и x" :


Учитывая, что функция Лапласа нечетна, т.е. Ф(-x ) = – Ф( x ), получим
P 100 (75;90) = Ф (2,5) – Ф(–1,25) = Ф(2,5) + Ф(1,25).
По табл. П.2. приложения найдем:
Ф(2,5) = 0,4938; Ф(1,25) = 0,3944.
Искомая вероятность
P 100 (75; 90) = 0,4938 + 0,3944 = 0,8882.
б) Требование, чтобы событие появилось не менее 75 раз, означает, что число появлений события может быть равно 75, либо 76, …, либо 100. Т.о., в рассматриваемом случае следует принять k 1 = 75, k 2 = 100. Тогда

.
По табл. П.2. приложения найдем Ф(1,25) = 0,3944; Ф(5) = 0,5.
Искомая вероятность
P 100 (75;100) = (5) – (–1,25) = (5) + (1,25) = 0,5 + 0,3944 = 0,8944.
в) Событие – «А появилось не менее 75 раз» и «А появилось не более 74 раз» противоположны, поэтому сумма вероятностей этих событий равна 1. Следовательно, искомая вероятность
P 100 (0;74) = 1 – P 100 (75; 100) = 1 – 0,8944 = 0,1056.

Включайся в дискуссию
Читайте также
Петр I допрашивает царевича Алексея Петровича в Петергофе Петр 1 допрашивает царевича алексея история
Что значит
Шедевр Нормандского искусства-Ковёр из Байе