Подпишись и читай
самые интересные
статьи первым!

Химическое равновесие. Константа химического равновесия

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Принцип Ле Шателье

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

;

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих массв простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

v пр = k пр С А а С В b ,

а скорость обратной реакции - с концентрациями продуктов уравнением

v обр = k обр С D d С E e .

При достижении равновесия эти скорости равны друг другу:

v пр = v обр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационнойи обозначается К с . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активностивеществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, К с и К а практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между К р и К с существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Тогда для реакции в общем виде после замены парциальных давлений на концентрации получим



Заменяя выражение (d + с) - (а + b) на равное ему Dn , получим окончательное выражение

К р = К с (RT ) D n или К с = К р (RT ) - D n ,

где Dn - изменение числа молей газообразных веществ в ходе реакции:

Dn = ån i прод (г) - ån i исх (г) ).

Если Dn = 0, т. е. процесс идёт без изменения числа молей газообразных веществ, и К р = К с .

Например, для реакции гидратации этилена, протекающей в газовой фазе:

C 2 H 4 (г) + H 2 O (г) Û C 2 H 5 OH (г) ,



В данном случае Dn = 1 - (1 + 1) = -1. Значит, соотношение между константами может быть выражено таким уравнением:

К р = К с (RT ) - 1 или К с = К р RT .

Таким образом, зная К р этой реакции при каждой данной температуре, можно вычислить значение К с и наоборот.

Размерность констант равновесия зависит от способа выражения концентрации (давления) и стехиометрии реакции. Часто она может вызывать недоумение, например, в рассмотренном примере [моль - 1 м 3 ] для К с и [Па - 1 ] для К р , но в этом нет ничего неверного. При равенстве сумм стехиометрических коэффициентов продуктов и исходных веществ константа равновесия будет безразмерной.

Константа равновесия

Конста́нта равнове́сия - величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями , концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Способы выражения константы равновесия

Например, для реакции окисления монооксида углерода :

2CO + O 2 = 2CO 2

константа равновесия может быть рассчитана по уравнению:

где Δn - изменение числа молей веществ в ходе реакции. Видно, что K x зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ (), то .

Стандартная константа равновесия

Стандартная константа равновесия реакции в смеси идеальных газов (когда начальные парциальные давления участников реакции равны их значениям в стандартном состоянии = 0,1013 МПа или 1 атм) может быть рассчитана по выражению:

где - относительные парциальные давления компонентов, .

Стандартная константа равновесия - безразмерная величина. Она связана с K p соотношением:

Видно, что если выражены в атмосферах, то и .

Для реакции в смеси реальных газов в стандартном начальном состоянии парциальные фугитивности газов принимаются равными их парциальным давлениям = 0,1013 МПа или 1 атм. K f связана с K 0 соотношением:

где γ i - коэффициент фугитивности i-го реального газа в смеси.

Константа равновесия реакций в гетерогенных системах

FeO т + CO г = Fe т + CO 2г

константа равновесия (при условии, что газовая фаза идеальна) имеет вид:

Константа равновесия и изменение энергии Гиббса

Константа равновесия и константа скорости реакции

Для обратимой химической реакции константа равновесия может быть выражена через константы скорости прямых и обратных реакций, исходя из того факта, что в состоянии равновесия скорости прямой и обратной реакций равны. Например, для элементарной обратимой химической реакции первого порядка

где k 1 - константа скорости прямой реакции, а k 2 - обратной. Это важное соотношение даёт одну из «точек соприкосновения» химической кинетики и химической термодинамики.

Методы расчета константы равновесия

Расчётные методы определения константы равновесия реакции обычно сводятся к вычислению тем или иным способом стандартного изменения энергии Гиббса в ходе реакции (ΔG 0 ), а затем использованию формулы:

, где - универсальная газовая постоянная .

При этом следует помнить, что энергия Гиббса - функция состояния системы, то есть она не зависит от пути процесса, от механизма реакции, а определяется лишь начальным и конечным состояниями системы. Следовательно, если непосредственное определение или расчёт ΔG 0 для некоторой реакции по каким-либо причинам затруднены, можно подобрать такие промежуточные реакции, для которых ΔG 0 известно или может быть легко определено, и суммирование которых даст рассматриваемую реакцию (см. Закон Гесса). В частности, в качестве таких промежуточных реакций часто используют реакции образования соединений из элементов.

Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции

Энтропийный метод расчёта ΔG реакции является одним из самых распространённых и удобных . Он основан на соотношении:

или, соответственно, для стандартного изменения энергии Гиббса:

Здесь ΔH 0 при постоянных давлении и температуре равно тепловому эффекту реакции, методы расчёта и экспериментального определения которого известны - см., например, уравнение Кирхгофа :

Необходимо получить изменение энтропии в ходе реакции. Эта задача может быть решена несколькими способами, например:

  • По термическим данным - с опорой на тепловую теорему Нернста и с использованием сведений о температурной зависимости теплоёмкости участников реакции. Например, для веществ, при нормальных условиях находящихся в твёрдом состоянии:
где S 0 = 0 (постулат Планка) и тогда, соответственно, . (здесь индекс sol - от англ. solid, "твердый"). При некоторой заданной температуре T: Для жидких или газообразных при нормальной температуре веществ, или, в более общем случае, для веществ, в интервале температур от 0 (или 298) и до T претерпевающих фазовый переход , следует учитывать изменение энтропии, связанное с этим фазовым переходом. где A и B - табличные константы, зависящие от типа рассматриваемого соединения, M - молекулярная масса.

Итак, если извеcтны , и температурные зависимости теплоёмкости, может быть рассчитано по формуле:

Несколько упрощённый вариант этой формулы получают, считая сумму теплоёмкостей веществ не зависящей от температуры и равной сумме теплоёмкостей при 298 K:

И еще более упрощённый расчёт проводят, приравнивая сумму теплоёмкостей к нулю:

Переход от к константе равновесия осуществляется по приведённой выше формуле.

Расчёт константы равновесия методами статистической термодинамики

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + d D,

где A и B - исходные вещества прямой реакции; C и D - продукты прямой реакции; а, в, с, и d - стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

u пр = k 1 C А а C В в (6.1)

где k 1 - константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

u обр = k 2 C C с C D d (6.2)

где k 2 - константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой u пр = u обр, следовательно

k 1 C А а C В в = k 2 C C с C D d (6.3)

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия - это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение - всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В - равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева , можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

где Dn - изменение числа молей газообразных участников реакции

Dn = (с + d ) - (а + в) (6.11)

Следовательно,

K Р = К С (RT) D n (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.


Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D - твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4 , то реакция необратима; если K < 1, то такая реакция нетехнологична; если K < 10 -4 , то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия - это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: -C А или C В ®; -C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры - в обратном направлении. (Схематично можно записать: при +Q -Т ¬; ¯Т ®; при -Q -Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления - в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления - в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 -Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

Количественная характеристика, показывающая направление реакции и смещение концентрации веществ, называется константой равновесия химической реакции. Константа равновесия зависит от температуры и природы реагентов.

Обратимые и необратимые реакции

Все реакции можно разделить на два типа:

  • обратимые , одновременно протекающие в двух взаимно противоположных направлениях;
  • необратимые , протекающие в одном направлении с полным расходом хотя бы одного исходного вещества.

При необратимых реакциях обычно образуются нерастворимые вещества в виде осадка или газа. К таким реакциям относятся:

  • горение:

    C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O;

  • разложение:

    2KMnO 4 → K 2 MnO 4 + MnO 2 + H 2 O;

  • присоединение с образованием осадка или газа:

    BaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl.

Рис. 1. Образование осадка BaSO 4 .

Обратимые реакции возможны только в определённых неизменных условиях. Исходные вещества дают новое вещество, которое тут же распадается на составные части и собирается вновь. Например, в результате реакции 2NO + O 2 ↔ 2NO 2 оксид азота (IV) легко разлагается на оксид азота (II) и кислород.

Равновесие

Через определённое время скорость обратимой реакции замедляется. Достигается химическое равновесие - состояние, при котором не происходит изменения концентрации исходных веществ и продуктов реакции с течением времени, так как скорость прямой и обратной реакций уравниваются. Равновесие возможно только в гомогенных системах, то есть все реагирующие вещества являются либо жидкостями, либо газами.

Рассмотрим химическое равновесие на примере реакции взаимодействия водорода с йодом:

  • прямая реакция -

    H 2 + I 2 ↔ 2HI;

  • обратная реакция -

    2HI ↔ H 2 + I 2 .

Как только смешиваются два реагента - водород и йод - йодоводорода ещё не существует, так как простые вещества только вступают в реакцию. Большое количество исходных веществ активно реагируют друг с другом, поэтому скорость прямой реакции будет максимальной. При этом обратная реакция не протекает, и скорость её равна нулю.

Скорость прямой реакции можно выразить графически:

ν пр = k пр ∙ ∙ ,

где k пр - константа скорости прямой реакции.

Со временем реагенты расходуются, их концентрация снижается. Соответственно, скорость прямой реакции уменьшается. Одновременно с этим увеличивается концентрация нового вещества - йодоводорода. При накоплении он начинает разлагаться, и скорость обратной реакции повышается. Её можно выразить как

ν обр = k обр ∙ 2 .

Йодоводород в квадрате, так как коэффициент молекулы равен двум.

В определённый момент скорости прямой и обратной реакции уравниваются. Наступает состояние химического равновесия.

Рис. 2. График зависимости скорости реакции от времени.

Равновесие можно сместить либо в сторону исходных веществ, либо в сторону продуктов реакции. Смещение под воздействием внешних факторов называется принципом Ле Шателье. На равновесие влияют температура, давление, концентрация одного из веществ.

Расчёт константы

В состоянии равновесия обе реакции идут, но при этом концентрации веществ находятся в равновесии (образуются равновесные концентрации), так как уравновешенны скорости (ν пр = ν обр).

Химическое равновесие характеризуется константой химического равновесия, которая выражается сводной формулой:

K p = k пр / k обр = const.

Константы скорости реакции можно выразить через соотношение скорости реакции. Возьмём условное уравнение обратной реакции:

aA + bB ↔ cC + dD.

Тогда скорости прямой и обратной реакции будут равны:

  • ν пр = k пр ∙ [A] p a ∙ [B] p b
  • ν обр = k обр ∙ [C] p c ∙ [D] p d .

Соответственно, если

ν пр = ν обр,

k пр ∙ [A] p a ∙ [B] p b = k обр ∙ [C] p c ∙ [D] p d .

Отсюда можно выразить соотношение констант:

k обр / k пр = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Это соотношение равно константе равновесия:

K p = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Рис. 3. Формула константы равновесия.

Величина показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции.

Что мы узнали?

Реакции в зависимости от конечных продуктов классифицируются на обратимые и необратимые. Обратимые реакции протекают в обе стороны: исходные вещества образуют конечные продукты, которые разлагаются на исходные вещества. В ходе реакции скорости прямой и обратной реакций уравновешиваются. Такое состояние называется химическим равновесием. Оно может быть выражено как соотношение произведения равновесных концентраций продуктов реакции к произведению разновесных концентраций исходных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.8 . Всего получено оценок: 193.

Включайся в дискуссию
Читайте также
День памяти участников первой мировой войны в доме рио День памяти воинов первой мировой войны
Алкены — Гипермаркет знаний
Урок