Подпишись и читай
самые интересные
статьи первым!

Как найти два угла трапеции. Как найти угол в трапеции

Трапеция – это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они именуются основаниями трапеции , а две другие стороны – боковыми сторонами трапеции .

Инструкция

1. Задача нахождения произвольного угла в трапеции требует довольного числа дополнительных данных. Разглядим пример, в котором знамениты два угла при основании трапеции . Пускай вестимы углы ∠BAD и ∠CDA, обнаружим углы ∠ABC и ∠BCD. Трапеция владеет таким свойством, что сумма углов при всякой боковой стороне равна 180°. Тогда ∠ABC = 180°-∠BAD, а ∠BCD = 180°-∠CDA.

2. В иной задаче может быть указано равенство сторон трапеции и какие-либо добавочные углы. Скажем, как на рисунке, может быть вестимо, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол ∠CAD = α.Разглядим треугольник ABC, он равнобедренный, потому что AB = BC. Тогда ∠BAC = ∠BCA. Обозначим его x для краткости, а ∠ABC – y. Сумма углов всякого треугольник а равна 180°, из этого следует, что 2x + y = 180°, тогда y = 180° – 2x. В то же время из свойств трапеции : y + x + α = 180° и следственно 180° – 2x + x + α = 180°. Таким образом, x = α. Мы обнаружили два угла трапеции : ∠BAC = 2x = 2α и ∠ABC = y = 180° – 2α.Потому что AB = CD по условию, то трапеция равнобокая либо равнобедренная. Значит, диагонали равны и равны углы при основаниях. Таким образом, ∠CDA = 2α, а ∠BCD = 180° – 2α.

Диагональ многоугольника – отрезок, тот, что соединяет две не граничащие между собой вершины фигуры (т.е. несмежные вершины либо не принадлежащие одной стороне многоугольника ). В параллелограмме, зная длину диагоналей и длину сторон, дозволено рассчитать углы между диагоналями .

Инструкция

1. Для комфорта воспринятия информации начертите на листе бумаги произвольный параллелограмм АВСD (параллелограмм – это четырехугольник, противоположные стороны которого попарно равны и параллельны). Объедините противоположные вершины отрезками. Полученные АС и ВD – диагонали. Обозначьте точку пересечения диагоналей буквой О. Нужно обнаружить углы ВОС (АОD) и СOD (АОВ).

2. Параллелограмм владеет целым рядом математических свойств:- диагонали точкой пересечения делятся напополам; – диагональ параллелограмма делит его на два равных треугольника ;- сумма всех углов в параллелограмме равна 360 градусов;- сумма углов, прилежащих к одной стороне параллелограмма, равна 180 градусам;- сумма квадратов диагоналей равна двойственный сумме квадратов его смежных сторон.

3. Дабы обнаружить углы между диагоналями , воспользуйтесь теоремой косинусов из теории элементарной геометрии (Евклидовой). Согласно теореме косинусов, квадрат стороны треугольника (A) дозволено получить, сложив квадраты 2-х его других сторон (B и C), и из полученной суммы вычесть двойное произведение этих сторон (B и C) на косинус угла между ними.

4. Применительно к треугольнику ВОС параллелограмма АВСD теорема косинусов будет выглядеть дальнейшим образом:Квадрат ВС = квадрат ВО + квадрат ОС – 2*ВО*ОС*cos угла ВOCОтсюда соs угла BOC = (квадрат ВС –квадрат ВО – квадрат ОС) / (2*ВО*ОС)

5. Обнаружив значение угла ВОС (АОD) легко вычислить значение иного угла, заключенного между диагоналями – СОD (АОВ). Для этого из 180 градусов вычтите значение угла ВОС (АОD) – т.к. сумма смежных углов равна 180 градусам, а углы ВОС и СОD и углы АОD и АОВ – смежные.

Видео по теме

Для решения этой задачи способами векторной алгебры, вам нужно знать следующие представления: геометрическая векторная сумма и скалярное произведение векторов, а также следует помнить качество суммы внутренних углов четырехугольника.

Вам понадобится

  • – бумага;
  • – ручка;
  • – линейка.

Инструкция

1. Вектор – это направленный отрезок, то есть величина, считающаяся заданной всецело, если задана его длина и направление (угол) к заданной оси. Расположение вектора огромнее ничем не ограничено. Равными считаются два вектора, владеющие идентичными длинами и одним направлением. Следственно при применении координат векторы изображают радиус-векторами точек его конца (предисловие располагается в начале координат).

2. По определению: результирующим вектором геометрической суммы векторов именуется вектор, исходящий из начала первого и имеющего конец в конце второго, при условии, что конец первого, совмещен с началом второго. Это дозволено продолжать и дальше, строя цепочку подобно расположенных векторов. Изобразите данный четырехугольник ABCD векторами a, b, c и d в соответствии рис. 1. Видимо, что при таком расположении результирующий вектор d=a+ b+c.

3. Скалярное произведение в данном случае комфортнее каждого определить на основе векторов a и d. Скалярное произведение, обозначаемое (a, d)= |a||d|cosф1. Тут ф1 – угол между векторами a и d. Скалярное произведение векторов, заданных координатами, определяется следующими выражением: (a(ax, ay), d(dx, dy))=axdx+aydy, |a|^2= ax^2+ ay^2, |d|^2= dx^2+ dy^2, тогда cos Ф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2)).

4. Основные представления векторной алгебры в привязке к поставленной задаче, приводят к тому, что для однозначной постановки этой задачи довольно задание 3 векторов, расположенных, возможен, на AB, BC, и CD, то есть a, b, c. Дозволено финально сразу задать координаты точек A, B, C, D, но данный метод является избыточным (4 параметра взамен 3-х).

5. Пример. Четырехугольник ABCD задан векторами его сторон AB, BC, CD a(1,0), b(1,1), c(-1,2). Обнаружить углы между его сторонами. Решение. В связи с высказанным выше, 4-й вектор (для AD) d(dx,dy)=a+ b+c={ax+bx +cx, ay+by+cy}={1,3}. Следуя методике вычисления угла между векторами аcosф1=(axdx+aydy)/(sqrt(ax^2+ ay^2)sqrt(dx^2+ dy^2))=1/sqrt(10), ф1=arcos(1/sqrt(10)).-cosф2=(axbx+ayby)/(sqrt(ax^2+ ay^2)sqrt(bx^2+ by^2))=1/sqrt2, ф2=arcos(-1/sqrt2), ф2=3п/4.-cosф3=(bxcx+bycy)/(sqrt(bx^2+ by^2)sqrt(cx^2+ cy^2))=1/(sqrt2sqrt5), ф3=arcos(-1/sqrt(10))=п-ф1. В соответствии с примечанием 2 – ф4=2п- ф1 – ф2- ф3=п/4.

Видео по теме

Обратите внимание!
Примечание 1. В определении скалярного произведения применяется угол между векторами. Тут, скажем, ф2 – это угол между АВ и ВС, а между a и b данный угол п-ф2. сos(п- ф2)=- сosф2. Подобно для ф3.Примечание 2. Знаменито, что сумма углов четырехугольника равна 2п. Следственно ф4=2п- ф1 – ф2- ф3.

Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению , как говориться: куда мы без теоремы Пифагора, ?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, .

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

Рассмотрим задачи:

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

Таким образом:

Ответ: 0,96

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:


27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

Можем вычислить высоту трапеции, а затем найти катет:

По теореме Пифагора вычисляем катет:

Таким образом, меньшее основание равно:

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее основание разбивается на отрезки:

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:


Таким образом большее основание будет равно:

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

По определению тангенса:

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

Выразим гипотенузу обозначенную как х через косинус:

Из основного тригонометрического тождества найдём cosα

Таким образом:

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50 0 ? Ответ дайте в градусах.

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 180 0 . В нашем случае это

C условии сказано, что разность противолежащих углов равна 50 0 , то есть

В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.

Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.

Трапеция и все-все-все

Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.

Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.

В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.

Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.

Свойства диагоналей трапеции

Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.

  1. Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2 .
  2. Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.
    Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k 2 .
  3. Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
  4. Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
    Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и середины оснований Х и Т.
  5. Через точку пересечения диагоналей проведем отрезок, который соединит основания трапеции (Т лежит на меньшем основании КМ, Х – на большем АЕ). Точка пересечения диагоналей делит этот отрезок в следующем соотношении: ТО/ОХ = КМ/АЕ .
  6. А теперь через точку пересечения диагоналей проведем параллельный основаниям трапеции (a и b) отрезок. Точка пересечения разделит его на две равных части. Найти длину отрезка можно по формуле 2ab/(a + b) .

Свойства средней линии трапеции

Среднюю линию проведите в трапеции параллельно ее основаниям.

  1. Длину средней линии трапеции можно вычислить, если сложить длины оснований и разделить их пополам: m = (a + b)/2 .
  2. Если провести через оба основания трапецию любой отрезок (высоту, к примеру), средняя линия разделит его на две равных части.

Свойство биссектрисы трапеции

Выберите любой угол трапеции и проведите биссектрису. Возьмем, например, угол КАЕ нашей трапеции АКМЕ. Выполнив построение самостоятельно, вы легко убедитесь – биссектрисой отсекается от основания (или его продолжения на прямой за пределами самой фигуры) отрезок такой же длины, что и боковая сторона.

Свойства углов трапеции

  1. Какую бы из двух пар прилежащих к боковой стороне углов вы не выбрали, сумма углов в паре всегда составляет 180 0: α + β = 180 0 и γ + δ = 180 0 .
  2. Соединим середины оснований трапеции отрезком ТХ. Теперь посмотрим на углы при основаниях трапеции. Если сумма углов при любом из них составляет 90 0 , длину отрезка ТХ легко вычислить исходя из разности длин оснований, разделенной пополам: ТХ = (АЕ – КМ)/2 .
  3. Если через стороны угла трапеции провести параллельные прямые, те разделят стороны угла на пропорциональные отрезки.

Свойства равнобедренной (равнобокой) трапеции

  1. В равнобедренной трапеции равны углы при любом из оснований.
  2. Теперь снова постройте трапецию, чтобы проще было представить, о чем речь. Посмотрите внимательно на основание АЕ – вершина противоположного основания М проецируется в некую точку на прямой, которая содержит АЕ. Расстояние от вершины А до точки проекции вершины М и средняя линия равнобедренной трапеции – равны.
  3. Пару слов о свойстве диагоналей равнобедренной трапеции – их длины равны. А также одинаковы углы наклона этих диагоналей к основанию трапеции.
  4. Только около равнобедренной трапеции можно описать окружность, поскольку сумма противолежащих углов четырехугольника 180 0 – обязательное условие для этого.
  5. Из предыдущего пункта следует свойство равнобедренной трапеции – если возле трапеции можно описать окружность, она является равнобедренной.
  6. Из особенностей равнобедренной трапеции вытекает свойство высоты трапеции: если ее диагонали пересекаются под прямым углом, то длина высоты равна половине суммы оснований: h = (a + b)/2 .
  7. Снова проведите отрезок ТХ через середины оснований трапеции – в равнобедренной трапеции он является перпендикуляром к основаниям. И одновременно ТХ – ось симметрии равнобедренной трапеции.
  8. На этот раз опустите на большее основание (обозначим его a) высоту из противолежащей вершины трапеции. Получится два отрезка. Длину одного можно найти, если длины оснований сложить и разделить пополам: (a + b)/2 . Второй получим, когда из большего основания вычтем меньшее и полученную разность разделим на два: (a – b)/2 .

Свойства трапеции, вписанной в окружность

Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.

  1. Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
  2. Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
  3. Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
  4. Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ .
  5. Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ . Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников.
  6. Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*S АМЕ .

Свойства трапеции, описанной около окружности

Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.

  1. Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2 .
  2. У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ .
  3. Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
  4. Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab .
  5. И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные.
    Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.

Свойства прямоугольной трапеции

Прямоугольной называют трапецию, один из углов которой является прямым. И ее свойства проистекают из этого обстоятельства.

  1. У прямоугольной трапеции одна из боковых сторон перпендикулярна основаниям.
  2. Высота и боковая сторона трапеции, прилежащая к прямому углу, равны. Это позволяет вычислять площадь прямоугольной трапеции (общая формула S = (a + b) * h/2 ) не только через высоту, но и через боковую сторону, прилежащую к прямому углу.
  3. Для прямоугольной трапеции актуальны уже описанные выше общие свойства диагоналей трапеции.

Доказательства некоторых свойств трапеции

Равенство углов при основании равнобедренной трапеции:

  • Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).

Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.

АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.

Откуда АКМ = 180 0 - МЕТ = 180 0 - КАЕ = КМЕ.

Что и требовалось доказать.

Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной :

  • Для начала проведем прямую МХ – МХ || КЕ. Получим параллелограмм КМХЕ (основание – МХ || КЕ и КМ || ЕХ).

∆АМХ – равнобедренный, поскольку АМ = КЕ = МХ, а МАХ = МЕА.

МХ || КЕ, КЕА = МХЕ, поэтому МАЕ = МХЕ.

У нас получилось, что треугольники АКЕ и ЕМА равны между собой, т.к АМ = КЕ и АЕ – общая сторона двух треугольников. А также МАЕ = МХЕ. Можем сделать вывод, что АК = МЕ, а отсюда следует и что трапеция АКМЕ – равнобедренная.

Задача для повторения

Основания трапеции АКМЕ равны 9 см и 21 см, боковая сторона КА, равная 8 см, образует угол 150 0 с меньшим основанием. Требуется найти площадь трапеции.

Решение: Из вершины К опустим высоту к большему основанию трапеции. И начнем рассматривать углы трапеции.

Углы АЕМ и КАН являются односторонними. А это значит, в сумме они дают 180 0 . Поэтому КАН = 30 0 (на основании свойства углов трапеции).

Рассмотрим теперь прямоугольный ∆АНК (полагаю, этот момент очевиден читателям без дополнительных доказательств). Из него найдем высоту трапеции КН – в треугольнике она является катетом, который лежит напротив угла в 30 0 . Поэтому КН = ½АВ = 4 см.

Площадь трапеции находим по формуле: S АКМЕ = (КМ + АЕ) * КН/2 = (9 + 21) * 4/2 = 60 см 2 .

Послесловие

Если вы внимательно и вдумчиво изучили эту статью, не поленились с карандашом в руках начертить трапеции для всех приведенных свойств и разобрать их на практике, материал должен был неплохо вами усвоиться.

Конечно, информации тут много, разнообразной и местами даже запутанной: не так уж сложно перепутать свойства описанной трапеции со свойствами вписанной. Но вы сами убедились, что разница огромна.

Теперь у вас есть подробный конспект всех общих свойств трапеции. А также специфических свойств и признаков трапеций равнобедренной и прямоугольной. Им очень удобно пользоваться, чтобы готовиться к контрольным и экзаменам. Попробуйте сами и поделитесь ссылкой с друзьями!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Трапеция - это плоский четырехугольник , у которого две противолежащие стороны параллельны. Они называются основаниями трапеции , а две другие стороны - боковыми сторонами трапеции .

Инструкция

Задача нахождения произвольного угла в трапеции требует достаточного количества дополнительных данных. Рассмотрим пример, в котором известны два угла при основании трапеции . Пусть известны углы &ang-BAD и &ang-CDA, найдем углы &ang-ABC и &ang-BCD. Трапеция обладает таким свойством, что сумма углов при каждой боковой стороне равна 180°-. Тогда &ang-ABC = 180°--&ang-BAD, а &ang-BCD = 180°--&ang-CDA.

трапеции" class="lightbx" data-lightbox="article-image">

В другой задаче может быть указано равенство сторон трапеции и какие-нибудь дополнительные углы. Например, как на рисунке, может быть известно, что стороны AB, BC и CD равны, а диагональ составляет с нижним основанием угол &ang-CAD = α-.Рассмотрим треугольник ABC, он равнобедренный, так как AB = BC. Тогда &ang-BAC = &ang-BCA. Обозначим его x для краткости, а &ang-ABC - y. Сумма углов любого треугольник а равна 180°-, из этого следует, что 2x + y = 180°-, тогда y = 180°- - 2x. В то же время из свойств трапеции : y + x + α- = 180°- и следовательно 180°- - 2x + x + α- = 180°-. Таким образом, x = α-. Мы нашли два угла трапеции : &ang-BAC = 2x = 2α- и &ang-ABC = y = 180°- - 2α-.Так как AB = CD по условию, то трапеция равнобокая или равнобедренная. Значит,

Трапеция - это геометрическая фигура, четырехугольник, который имеет две параллельные линии. Иные две линии параллельными быть не могут, в таком случае это был бы параллелограмм.

Виды трапеций

Трапеции бывают трех видов: прямоугольная, когда два угла трапеции составляют по 90 градусов; равносторонняя, в которой две боковые линии равные; разносторонняя, где боковые линии разной длинны.

Работая с трапециями, можно научиться вычислять их площадь, высоту, размер линий, а также разобраться в том, как находить углы трапеции.

Прямоугольная трапеция

Прямоугольная трапеция имеет два угла по 90 градусов. Сумма остальных двух углов равняется 180 градусам. Поэтому есть способ, как найти углы прямоугольной трапеции, зная размер одного из углов. Пусть он составляет, например, 26 градусов. Всего лишь необходимо из общей суммы углов трапеции - 360 градусов — вычесть сумму известных углов. 360-(90+90+26) = 154. Искомый угол будет составлять 154 градуса. Можно считать проще: так как два угла — прямые, то в сумме они будут составлять 180 градусов, то есть половину 360; сумма непрямых углов также будет равна 180, поэтому можно сосчитать проще и быстрее 180 -26 =154.

Равнобедренная трапеция

Равнобедренная трапеция имеет две равные стороны, которые не являются основаниями. Есть формулы, которые разъясняют, как найти углы равнобедренной трапеции.

Расчет 1, если даны размеры сторон трапеции

Они обозначаются буквами A, В и C: A - размеры боковых сторон, В и C - размеры основания, меньшего и большего соответственно. Трапецию необходимо также назвать АВСD. Для вычислений необходимо провести высоту Н из угла В. Образовался прямоугольный треугольник ВНА, где АН и ВН - катеты, АВ - гипотенуза. Теперь можно вычислить размер катета АН. Для этого необходимо от большей основы трапеции вычесть меньшую, и разделить пополам, т.е. (с-b)/2.

Чтобы найти острый угол треугольника, необходимо использовать функциюcos. Cos искомого угла (β) будет равен а / ((с-b)/2). Чтобы узнать размер угла β, необходимо воспользоваться функцией arcos. β = arcos 2а/с-b. Т.к. два угла равносторонней трапеции равны, то они будут составлять: угол ВАD = углу СDА = arcos 2а/с-b.

Расчет 2. Если даны размеры оснований трапеции.

Имея значения оснований трапеции - а и b, можно воспользоваться тем же методом, что и в предыдущем решении. Из угла b необходимо опустить высоту h. Имея размеры двух катетов только что созданного треугольника, можно воспользоваться похожей тригонометрической функцией, только в этом случае это буде tg. Чтобы преобразовать угол и получить его значение, необходимо воспользоваться функцией arctg. Исходя из формул, получаем размеры искомых углов:

β = arctg 2h/с-b, а угол α = 180 - arctg 2h/с-b/

Обычная разносторонняя трапеция

Есть способ, как найти больший угол трапеции. Для этого необходимо знать размеры обоих острых углов. Зная их, и зная, что сумма углов при любом основании трапеции составляет 180 градусов, делаем вывод, что искомый тупой угол будет состоять из разницы 180 - размер острого угла. Также можно найти и другой тупой угол трапеции.

Включайся в дискуссию
Читайте также
День памяти участников первой мировой войны в доме рио День памяти воинов первой мировой войны
Алкены — Гипермаркет знаний
Урок