Подпишись и читай
самые интересные
статьи первым!

Семчиков Ю.Д. Высокомолекулярные соединения - файл n1.docx

УДК 541.64:547.32:547.371

РАДИКАЛЬНАЯ СОПОЛИМЕРИЗАЦИЯ СТИРОЛА И НЕНАСЫЩЕННЫХ ГЛИЦИДИЛОВЫХ ЭФИРОВ

М.А. Черниговская, Т.В. Раскулова

Ангарская государственная техническая академия,

665835, Иркутская область, г. Ангарск, ул. Чайковского, 60, [email protected]

Исследована бинарная радикальная сополимеризация ненасыщенных глицидиловых эфиров (алли-лглицидилового эфира, винилглицидилового эфира этиленгликоля) со стиролом в среде толуола. Рассчитаны константы сополимеризации и микроструктура полученных сополимеров. Установлено, что состав сополимеров зависит от строения ненасыщенного глицидилового эфира. Сополимеры аллилглицидилового эфира при любом составе исходной мономерной смеси близки по своему строению к чередующимся. При сополимеризации стирола с винилглицидиловым эфиром этиленгликоля последний характеризуется меньшей реакционной способностью. Ил. 2. Табл. 3. Библиогр. 14 назв.

Ключевые слова: радикальная сополимеризация; стирол; аллилглицидиловый эфир; винилглициди-ловый эфир этиленгликоля.

RADICAL COPOLYMERIZATION OF STYRENE AND UNSATURATED GLYCIDYL ETHERS

M.A. Chernigovskaya, T.V. Raskulova

Angarsk State Technical Academy,

60, Chaikovskogo St., 665835, Angarsk, Irkutsk Region, 665835 Russia, [email protected]

The radical copolymerization of styrene and unsaturated glycidyl ethers (allyl glycidyl ether, ethylene glycol vinyl glycidyl ether) was examined in toluene solution. The reactivity ratios and parameters of copolymer microstructure were calculated. It was found that copolymer composition depends on unsaturated glycidyl ethers structure. Copolymers of styrene and allyl-glycidyl ether have alternative structure. Ethylene glycol vinyl glycidyl ether has less reactivity than styrene in copolymerization. 2 figures. 3 tables. 14 sources.

Key words: radical copolymerization; styrene; allyl glycidyl ether; ethylene glycol vinyl glycidyl ether. ВВЕДЕНИЕ

Одним из перспективных направлений в ется синтез сополимеров с активными функци-химии высокомолекулярных соединений явля- ональными группами. В качестве мономеров

для таких синтезов все больший интерес представляют эпоксидные соединения и, в частности, ненасыщенные глицидиловые эфиры (НГЭ). Сополимеры, содержащие в своем составе звенья НГЭ, интересны для теоретических исследований, так как одновременное наличие в составе НГЭ оксиранового цикла и атомов кислорода в боковой цепи делает возможным проявление эффектов комплексообра-зования.

С другой стороны, такие полимеры предоставляют широчайшую возможность к направленной модификации за счет проведения по-лимераналогичных реакций по оксирановым циклам и, следовательно, открывают путь к получению материалов, в том числе композиционных, с заранее заданным ценным комплексом свойств.

Спектр НГЭ, используемых в реакциях радикальной сополимеризации, достаточно широк, однако наиболее изученными в настоящее время являются производные метакриловой кислоты (например, глицидилметакрилат), ал-лилглицидиловый эфир (АГЭ), а также винилг-лицидиловые эфиры гликолей (например, ви-нилглицидиловый эфир этиленгликоля (ВГЭ)). Наиболее интересными в качестве модификаторов промышленных полимеров представляются АГЭ и ВГЭ, так как за счет невысокой реакционной способности они должны входить в состав полимеров в ограниченных количествах, не изменяя при этом общего комплекса свойств базового полимера .

Традиционные области использования этих соединений в процессах сополимеризации подробно рассмотрены в работах . В последнее время, эпоксисодержащие сополимеры все чаще используются для изготовления различных наноматериалов и нанокомпозиций [например, 5,6], а также функциональных полимерных композиционных материалов . Поэтому исследование процессов сополимериза-ции НГЭ, в том числе, АГЭ и ВГЭ, с базовыми промышленными мономерами представляет несомненный научный интерес.

Целью настоящей работы являлось исследование бинарной радикальной сополимериза-ции стирола (Ст) с АГЭ и ВГЭ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза сополимеров использовали товарный Ст производства ОАО АЗП (чистота

99.8 %) с константами: р = 0,906 г/мл, 1кип = = 145 °С, АГЭ (продукт компании «АШсИ») с константами: р = 0,962 г/мл, ^ип = 154 °С, пй20 = = 1,4330, и ВГЭ, полученный в ИрИХ СО РАН, очищенный до хроматографической чистоты

99.9 % со следующими константами: р = 1,038

г/мл, ^ип = 204 °С, = 1,4310.

Сополимеризацию проводили в растворе толуола при температуре 60°С и десятикратном избытке растворителя. В качестве инициатора использовали динитрил азо-бис-изомасляной кислоты в количестве 1% масс. Полученные сополимеры выделяли осаждением изобутанолом, очищали переосаждением изобутанолом из ацетона и высушивали до постоянной массы.

Состав полученных продуктов устанавливали по данным элементного анализа (С, Н), функционального анализа (содержание эпоксидных групп) и ИК-спектроскопии. Определение содержания эпоксидных групп в составе сополимеров проводили методом обратного титрования с хлороводородной кислотой согласно . Относительную вязкость определяли для 1 %-ных растворов в циклогексаноне при 25 °С.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В зависимости от состава исходной смеси полученные сополимеры являются твердыми порошкообразными или аморфными веществами белого цвета, хорошо растворимыми в полярных растворителях.

Факт протекания сополимеризации в исследованных системах подтверждали с помощью данных турбидиметрического титрования . Например, на кривых турбидиметриче-ского титрования сополимеров Ст - ВГЭ (рис. 1) наблюдается один перегиб, что свидетельствует об образовании сополимеров, а не смеси двух гомополимеров. Аналогичная картина наблюдается для сополимеров Ст - АГЭ.

В ИК-спектрах НГЭ наблюдается полоса поглощения в области 1620-1650 см-1, характерная для двойной связи. Наличие оксирано-вого цикла подтверждается присутствием в спектре полос поглощения в следующих областях: 765 и 915 см-1, относящихся к ассиммет-ричным валентным колебаниям эпоксидного кольца; 1230 см-1, относящейся к симметричным валентным колебаниям эпоксидного кольца; 3060 см-1, отвечающей колебаниям метилено-вой группы в эпоксидном кольце.

В ИК-спектрах сополимера полосы поглощения, характерные для двойной связи, отсутствуют, что подтверждает протекание процесса сополимеризации по винильной или аллильной группам. В областях поглощения, характерных для оксиранового цикла и алкильных групп, спектры сополимеров идентичны спектрам исходных НГЭ.

Экспериментальные данные, полученные в результате исследования процессов сополимеризации в системах Ст - ВГЭ и Ст - АГЭ, представлены в табл. 1.

Предполагалось, что исследованные НГЭ

О 0.2 0.4 0.6 0.8 1.0

Объем осадителя, мл

Рис. 1. Зависимость оптической плотности растворов сополимеров Ст - ВГЭ от объема добавленного осадителя (метанол). Содержание ВГЭ в исходной смеси (% мол.): 1 - 10; 2 - 25; 3 - 50

Таблица 1

Общие закономерности сополимеризации Ст - НГЭ в растворе толуола _(ДАК1% масс., 60°С, 2 ч)__

№ Состав исходной смеси, % мол. Состав сополимера, % мол. Выход, %

Ст НГЭ Ст НГЭ

Система Ст - АГЭ

1 95 5 36,36 63,64 3,7

2 90 10 55,14 44,86 12,6

3 70 30 47,16 52,84 32,4

4 50 50 92,32 7,68 20,2

5 30 70 46,73 53,27 19,8

6 10 90 60,13 39,87 19,3

Система Ст - ВГЭ

1 90 10 91,98 8,02 68,5

2 75 25 79,93 20,07 56,7

3 50 50 67,95 32,05 46,2

4 25 75 55,08 44,92 38,1

5 10 90 46,45 53,55 32,5

обладают более низкой реакционной способностью в радикальной сополимеризации, чем Ст. Такая картина действительно наблюдается для сополимеров Ст - ВГЭ. Они обогащены звеньями Ст во всем исследованном интервале исходных смесей, при этом содержание звеньев ВГЭ в составе сополимеров возрастает симбатно его количеству в мономерной смеси (табл. 1).

Для сополимеров Ст - АГЭ наблюдается

иная картина. При любом составе исходной мономерной смеси содержание звеньев Ст и АГЭ в сополимерах практически одинаково и составляет от 40 до 64% мол., что свидетельствует об образовании продуктов, близких к чередующимся (табл. 1).

Как показывает анализ литературных дан ных, для АГЭ характерно протекание процессов чередующейся сополимеризации с достаточно

Таблица 2

Общие закономерности сополимеризации ВХ - НГЭ в растворе толуола

(ДАК 1 % масс., 60 °С, 2 ч)

Состав исходной смеси, % мол. Состав сополимера, % мол. Выход, % Вязкость [Г|], дл/г

ВХ НГЭ ВХ НГЭ

Система ВХ - АГЭ

95,0 5,0 96,79 3,21 3,19 0,20

90,0 10,0 93,92 6,08 2,88 0,15

85,0 15,0 87,92 10,58 2,56 0,08

73,7 26,3 76,19 23,81 2,69 0,04

30,1 69,9 44,69 55,31 2,48 0,04

Система ВХ - ВГЭ

95,0 5,0 95,55 4,45 3,78 0,29

90,0 10,0 92,44 7,56 3,45 0,26

80,0 20,0 88,44 11,56 3,01 0,22

75,0 25,0 78,79 21,21 2,91 0,17

25,0 75,0 36,62 63,38 2,23 0,13

широким кругом мономеров [например, 11, 12]. Это объясняется образованием комплексов с переносом заряда между АГЭ и вторым сомоно-мером, в которых АГЭ играет роль донора. Однако исследование бинарной радикальной сополимеризации АГЭ с ВХ, проведенное авторами , не выявило образования чередующихся сополимеров (табл. 2).

Образование чередующихся сополимеров при сополимеризации АГЭ со Ст можно связать с образованием комплексов с переносом заряда между эпоксигруппой АГЭ и ароматическим кольцом стирола. Образующийся комплекс далее играет роль «индивидуального мономера» в сополимеризации, что приводит к получению продуктов чередующейся структуры.

Выходы продуктов, в общем, уменьшаются

с ростом содержания звеньев малоактивных мономеров в составе сополимеров (табл. 1), что обусловлено увеличением концентрации НГЭ в исходной смеси сомономеров. Повышение концентрации малоактивного мономера увеличивает его содержание в сополимере, но уменьшает суммарную скорость роста цепи и, следовательно, снижает выход продукта и его молекулярную массу. Данное рассуждение подтверждают значения относительной вязкости растворов сополимеров (например, Ст-АГЭ) и их зависимость от содержания эфиров в исходной смеси (рис. 2).

Расчет констант относительной активности мономеров (констант сополимеризации) для исследованных систем проводили разными методами. Константы сополимеризации системы

Рис. 2 Зависимость относительной вязкости сополимеров Ст - АГЭ от содержания АГЭ в исходной смеси

Таблица 3

Константы сополимеризации и средние длины блоков звеньев Ст ^^ _и НГЭ ^2) в составе сополимеров_

Система M1 m1 r Li L2

Система Ст - АГЭ 0,70 0,47 r1 = 0,09 1 1

0,50 0,92 r2 = 0,05 21 1

0,75 0,20 n1 = 1,13 ± 0,09 n2 = 0,22 ± 0,02 10 1

Система Ст - ВГЭ 0,50 0,32 9 1

Ст - АГЭ рассчитывали на основании данных функционального анализа нелинейным методом наименьших квадратов в пакете MathCAD 11 Enterprise Edition, позволяющим проводить расчеты по любым наборам экспериментальных данных. Константы сополимеризации для системы Ст - ВГЭ рассчитывали стандартными методами Файнмана - Росса и Келена - Тюдо-ша с использованием метода планирования эксперимента по Мортимеру и Тидвелу . Значения констант сополимеризации представлены в табл. 3. На основании значений констант сополимеризации были определены параметры микроструктуры сополимеров, которые также приведены в табл. 3.

Полученные значения констант сополимеризации подтверждают сделанное ранее заключение о различной реакционной способности НГЭ в процессах сополимеризации со Ст. Для системы Ст - АГЭ величины рассчитанных констант сополимеризации близки к нулю, что характерно для чередующихся сополимеров. Расчет микроструктуры данных сополимеров показал, что независимо от состава исходной смеси получаются практически строго чередующиеся продукты (табл. 3).

Значения констант относительной активности для сополимеров Ст - ВГЭ свидетельствуют о меньшей реакционной способности ВГЭ в радикальной сополимеризации по сравнению со Ст. ВГЭ присутствует в структуре данных со-

полимеров только в виде единичных звеньев, а длина блоков звеньев Ст в сополимерах закономерно уменьшается со снижением доли Ст в исходной смеси.

Таким образом, структура сополимеров Ст и НГЭ, по-видимому, может быть отражена следующей формулой:

- // ЖПХ. 1998 Т. 71, № 7. С. 1184-1188.

2. Винилглицидиловые эфиры гликолей - перспективные мономеры для полимеризационных процессов / Л.С. Григорьева [и др.]. Л.: Изд-во ЛТИ, 1982. 9 с.

3. Раскулова Т.В. Сополимеризация винилга-логенидов с функционально замещенными виниловыми мономерами: дис... д-ра хим. наук: 02.00.06: защищена 21.04.2010: утв. 08.10.2010. Иркутск, 2010. 315 с.

4. Покровская М.А., Раскулова Т.В. Сополимеризация аллилглицидилового эфира со стиролом // Вестник АГТА. 2011. № 5. С. 87-89.

5. Surface functionalization of Si3N4 nanoparticles by graft polymerization of glycidyl methacrylate and styrene / Luo Ying // J. Appl. Polym. Sci. 2006. V. 102. № 2. P. 992.

6. Tan Chung-Sung, Kuo Ting-Wu. Synthesis of polycarbonate-silica nanocomposites from copolymeriza-tion of CO2 with allyl glycidyl ether, cyclohexene oxide, and sol-gel // J. Appl. Polym. Sci. 2005. V. 98. № 2. P. 750.

7. Формирование композитов на основе ви-нилглицидилового эфира этиленгликоля и винилхло-рида / О.В. Лебедева [и др.] // Пластические массы. 2013. № 9. С. 35-39.

8. Калинина М.С. Анализ конденсационных полимеров. М.: Наука, 1983. 296 с.

9. Практическое руководство по определению молекулярных весов и молекулярно-массового распределения полимеров / А.И. Шатенштейн [и др.]. М.: Химия, 1964. 188 с.

10. Фракционирование полимеров / под ред. М. Кантова. М.: Мир, 1971. 444 с.

11. Heatley F., Lovell P.A., McDonald J. NMR-studies of free-radical polymerization and copolymeriza-tion of monomers and polymers containing allyl groups // Eur. Polym. J. 2. 1993. V. 29, № 2. Р. 255.

12. Yu Qing-bo, Bai Ru-ke, Zhang Ming-Хи. Живая радикальная сополимеризация аллилглицидилового эфира с метилакрилатом в присутствии бензилими-дазол-1-карбодитионата // Anhui ligong daxue xuebao. Ziran kexue ban; J. Anhui Univ. Sci. and Technol. Natur. Sci. 2006. V. 26, № 3. P. 56.

13. Эффект предпоследнего звена в сополимеризации винилхлорида и непредельных глицидило-вых эфиров / Т.В. Раскулова [и др.] // Высокомолекулярные соединения А. 2000. Т. 42, № 5. С. 744-750.

14. Tidwell P.W., Mortimer G.A. An Improved Method of Calculating Copolymerization Reactivity Ratios // J. Polym. Sci. A. 1965. V. 3. P. 369.

Радикальную сополимеризацию обычно инициируют теми же способами, что и радикальную гомополимеризацию. Элементарные стадии радикальной сополимеризации протекают по тем же механизмам, что и при гомополимеризации.

Рассмотрим сополимеризацию двух мономеров. Предполагая, что активность растущих радикалов определяется лишь типом концевого звена, при описании кинетики реакции следует учитывать четыре элементарные реакции роста цепи:

Реакция ростаСкорость реакции роста

~R 1 + М 1 ~R 1 k 11

~R 1 + М 2 ~R 2 k 12

~R 2 + М 1 ~R 1 k 21

~R 2 + М 2 ~R 2 k 22

где M i --мономер i-ro типа; ~R j --макрорадикал, оканчивающийся звеном М j , k ij - константа скорости присоединения М j мономера к ~R i радикалу.

Кинетическая обработка приведенной реакционной схемы в квазистационарном приближении позволяет установить связь между составом сополимеров и составом исходной смеси мономеров. В квазистационарном состоянии концентрации радикалов ~R 1 - и ~R 2 - постоянны, т. е. скорости перекрестного роста цепи равны между собой:

k 12 = k 21 (1-6)

Скорости превращения мономеров при сополимеризации описываются уравнениями

Для отношения скоростей этих реакций получим:

Исключая из этого уравнения стационарные концентрации радикалов и с помощью условия квазистационарности (1.6), получим выражение

здесь r 1 = k 11 /k 12 и r 2 = k 22 /k 21 -- так называемые константы сополимеризации . Величины r 1 и r 2 представляют собой отношения констант скоростей присоединения к данному радикалу «своего» и «чужого» мономеров. Значения r 1 и r 2 зависят от" химической природы реагирующих мономеров. На начальных стадиях превращения, когда без большой ошибки можно положить концентрации мономеров и [М 2 ] постоянными, состав сополимера будет определяться уравнением

где [] и -- концентрации мономерных звеньев в макромолекуле.

Зависимость состава сополимеров от состава смеси мономеров удобно характеризовать диаграммой состав мономерной смеси - состав сополимера (рис. 1.1). Форма получаемых кривых (1 - 4) зависит от значений r 1 и r 2 . При этом возможны следующие случаи: 1) r 1 = r 2 = 1, т. е. для всех соотношений концентраций мономеров в реакционной смеси, состав сополимера равен составу исходной смеси; 2) r 1 > 1, r 2 < 1, т. е. для всех соотношений концентраций мономеров в исходной смеси сополимер обогащен звеньями M 1 ; 3) r 1 < 1, r 2 > 1, т. е. для всех исходных соотношений концентраций мономеров сополимер обогащен звеньями М 2 ; 4) r 1 < 1 и r 2 < 1, т. е. при малых содержаниях M 1 в исходной смеси мономеров сополимер обогащен звеньями М 1 а при больших - звеньями М 2 . В последнем случае наблюдается склонность к чередованию в сополимере звеньев M 1 и М 2 , которая тем больше, чем ближе к нулю значения r 1 и r 2 , Случай, r 1 > 1 и r 2 > 1, которому должна соответствовать тенденция к раздельной полимеризации мономеров в смеси, на практике не реализуется.

Константы r 1 и r 2 могут быть определены экспериментально. Знание их позволяет предсказать состав сополимера и распределение мономерных звеньев в цепях при любом соотношении мономеров в смеси. Значения r 1 и r 2 при радикальной сополимеризации и, следовательно, состав сополимера обычно слабо зависят от природы растворителя и мало изменяются с температурой.

Рис.

Таблица 1.2. Константы радикальной сопблимеризации некоторых мономеров

Рассмотрение констант r 1 и r 2 в рамках теории идеальной радикальной реакционной способности приводит к заключению, что r 1 = r 2 =1, т. е. константы скоростей присоединения одного из мономеров к обоим радикалам в одинаковое число раз больше констант скоростей присоединения другого мономера к этим радикалам. Для ряда систем это условие хорошо оправдывается на опыте. В таких случаях мономерные звенья обоих типов располагаются в макромолекулах случайно. Однако для многих систем r 1 x r 2 < 1, отклонения связаны с влиянием полярных и пространственных факторов, которые обусловливают тенденцию мономерных звеньев M 1 и M 2 к чередованию в макромолекулах. В табл. 1.2 в качестве примеров приведены значения констант сополимеризации и их произведений для некоторых пар мономеров.

Схема «Q - е». Учет полярных факторов был сделан в рамках полуэмпирической схемы, называемой схемой «Q -- е», в которой принято, что

k 11 = P 1 Q 1 exp{-e 1 2 }

и k 12 = P 1 Q 2 exp{-e 1 e 2 }

где Р и Q -- параметры, соответствующие энергиям сопряжения в мономере и радикале, согласно теории идеальной радикальной реакционной способности; е 1 и е 2 -- величины, учитывающие поляризацию реагирующих мономеров и радикалов.

r 1 = Q 1 /Q 2 exp{-e 1 (e 1 -e 2)}

и аналогично

r 2 = Q 2 /Q 1 exp{-e 2 (e 2 -e 1)}

Используя эту схему, можно оценить относительную реакционную способность мономеров и роль полярных факторов для большого числа пар cополимеризующихся мономеров. За стандартный мономер обычно принимают стирол со значениями Q = 1, е = -0.8. При сополимеризации стирола с другими мономерами последние характеризуются своими значениями Q и е, что дает возможность предсказать поведение этих мономеров в реакциях сополимеризации с другими мономерами, для которых также установлены значения Q и е. Хотя схема «Q-e» пока не имеет полного теоретического обоснования, практически она оказалась очень полезной. Значения Q и е большинства мономеров собраны в справочной литературе.

УДК 541.64:547.32:547.371

РАДИКАЛЬНАЯ СОПОЛИМЕРИЗАЦИЯ СТИРОЛА И НЕНАСЫЩЕННЫХ ГЛИЦИДИЛОВЫХ ЭФИРОВ

М.А. Черниговская, Т.В. Раскулова

Ангарская государственная техническая академия,

665835, Иркутская область, г. Ангарск, ул. Чайковского, 60, [email protected]

Исследована бинарная радикальная сополимеризация ненасыщенных глицидиловых эфиров (алли-лглицидилового эфира, винилглицидилового эфира этиленгликоля) со стиролом в среде толуола. Рассчитаны константы сополимеризации и микроструктура полученных сополимеров. Установлено, что состав сополимеров зависит от строения ненасыщенного глицидилового эфира. Сополимеры аллилглицидилового эфира при любом составе исходной мономерной смеси близки по своему строению к чередующимся. При сополимеризации стирола с винилглицидиловым эфиром этиленгликоля последний характеризуется меньшей реакционной способностью. Ил. 2. Табл. 3. Библиогр. 14 назв.

Ключевые слова: радикальная сополимеризация; стирол; аллилглицидиловый эфир; винилглициди-ловый эфир этиленгликоля.

RADICAL COPOLYMERIZATION OF STYRENE AND UNSATURATED GLYCIDYL ETHERS

M.A. Chernigovskaya, T.V. Raskulova

Angarsk State Technical Academy,

60, Chaikovskogo St., 665835, Angarsk, Irkutsk Region, 665835 Russia, [email protected]

The radical copolymerization of styrene and unsaturated glycidyl ethers (allyl glycidyl ether, ethylene glycol vinyl glycidyl ether) was examined in toluene solution. The reactivity ratios and parameters of copolymer microstructure were calculated. It was found that copolymer composition depends on unsaturated glycidyl ethers structure. Copolymers of styrene and allyl-glycidyl ether have alternative structure. Ethylene glycol vinyl glycidyl ether has less reactivity than styrene in copolymerization. 2 figures. 3 tables. 14 sources.

Key words: radical copolymerization; styrene; allyl glycidyl ether; ethylene glycol vinyl glycidyl ether. ВВЕДЕНИЕ

Одним из перспективных направлений в ется синтез сополимеров с активными функци-химии высокомолекулярных соединений явля- ональными группами. В качестве мономеров

для таких синтезов все больший интерес представляют эпоксидные соединения и, в частности, ненасыщенные глицидиловые эфиры (НГЭ). Сополимеры, содержащие в своем составе звенья НГЭ, интересны для теоретических исследований, так как одновременное наличие в составе НГЭ оксиранового цикла и атомов кислорода в боковой цепи делает возможным проявление эффектов комплексообра-зования.

С другой стороны, такие полимеры предоставляют широчайшую возможность к направленной модификации за счет проведения по-лимераналогичных реакций по оксирановым циклам и, следовательно, открывают путь к получению материалов, в том числе композиционных, с заранее заданным ценным комплексом свойств.

Спектр НГЭ, используемых в реакциях радикальной сополимеризации, достаточно широк, однако наиболее изученными в настоящее время являются производные метакриловой кислоты (например, глицидилметакрилат), ал-лилглицидиловый эфир (АГЭ), а также винилг-лицидиловые эфиры гликолей (например, ви-нилглицидиловый эфир этиленгликоля (ВГЭ)). Наиболее интересными в качестве модификаторов промышленных полимеров представляются АГЭ и ВГЭ, так как за счет невысокой реакционной способности они должны входить в состав полимеров в ограниченных количествах, не изменяя при этом общего комплекса свойств базового полимера .

Традиционные области использования этих соединений в процессах сополимеризации подробно рассмотрены в работах . В последнее время, эпоксисодержащие сополимеры все чаще используются для изготовления различных наноматериалов и нанокомпозиций [например, 5,6], а также функциональных полимерных композиционных материалов . Поэтому исследование процессов сополимериза-ции НГЭ, в том числе, АГЭ и ВГЭ, с базовыми промышленными мономерами представляет несомненный научный интерес.

Целью настоящей работы являлось исследование бинарной радикальной сополимериза-ции стирола (Ст) с АГЭ и ВГЭ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза сополимеров использовали товарный Ст производства ОАО АЗП (чистота

99.8 %) с константами: р = 0,906 г/мл, 1кип = = 145 °С, АГЭ (продукт компании «АШсИ») с константами: р = 0,962 г/мл, ^ип = 154 °С, пй20 = = 1,4330, и ВГЭ, полученный в ИрИХ СО РАН, очищенный до хроматографической чистоты

99.9 % со следующими константами: р = 1,038

г/мл, ^ип = 204 °С, = 1,4310.

Сополимеризацию проводили в растворе толуола при температуре 60°С и десятикратном избытке растворителя. В качестве инициатора использовали динитрил азо-бис-изомасляной кислоты в количестве 1% масс. Полученные сополимеры выделяли осаждением изобутанолом, очищали переосаждением изобутанолом из ацетона и высушивали до постоянной массы.

Состав полученных продуктов устанавливали по данным элементного анализа (С, Н), функционального анализа (содержание эпоксидных групп) и ИК-спектроскопии. Определение содержания эпоксидных групп в составе сополимеров проводили методом обратного титрования с хлороводородной кислотой согласно . Относительную вязкость определяли для 1 %-ных растворов в циклогексаноне при 25 °С.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В зависимости от состава исходной смеси полученные сополимеры являются твердыми порошкообразными или аморфными веществами белого цвета, хорошо растворимыми в полярных растворителях.

Факт протекания сополимеризации в исследованных системах подтверждали с помощью данных турбидиметрического титрования . Например, на кривых турбидиметриче-ского титрования сополимеров Ст - ВГЭ (рис. 1) наблюдается один перегиб, что свидетельствует об образовании сополимеров, а не смеси двух гомополимеров. Аналогичная картина наблюдается для сополимеров Ст - АГЭ.

В ИК-спектрах НГЭ наблюдается полоса поглощения в области 1620-1650 см-1, характерная для двойной связи. Наличие оксирано-вого цикла подтверждается присутствием в спектре полос поглощения в следующих областях: 765 и 915 см-1, относящихся к ассиммет-ричным валентным колебаниям эпоксидного кольца; 1230 см-1, относящейся к симметричным валентным колебаниям эпоксидного кольца; 3060 см-1, отвечающей колебаниям метилено-вой группы в эпоксидном кольце.

В ИК-спектрах сополимера полосы поглощения, характерные для двойной связи, отсутствуют, что подтверждает протекание процесса сополимеризации по винильной или аллильной группам. В областях поглощения, характерных для оксиранового цикла и алкильных групп, спектры сополимеров идентичны спектрам исходных НГЭ.

Экспериментальные данные, полученные в результате исследования процессов сополимеризации в системах Ст - ВГЭ и Ст - АГЭ, представлены в табл. 1.

Предполагалось, что исследованные НГЭ

О 0.2 0.4 0.6 0.8 1.0

Объем осадителя, мл

Рис. 1. Зависимость оптической плотности растворов сополимеров Ст - ВГЭ от объема добавленного осадителя (метанол). Содержание ВГЭ в исходной смеси (% мол.): 1 - 10; 2 - 25; 3 - 50

Таблица 1

Общие закономерности сополимеризации Ст - НГЭ в растворе толуола _(ДАК1% масс., 60°С, 2 ч)__

№ Состав исходной смеси, % мол. Состав сополимера, % мол. Выход, %

Ст НГЭ Ст НГЭ

Система Ст - АГЭ

1 95 5 36,36 63,64 3,7

2 90 10 55,14 44,86 12,6

3 70 30 47,16 52,84 32,4

4 50 50 92,32 7,68 20,2

5 30 70 46,73 53,27 19,8

6 10 90 60,13 39,87 19,3

Система Ст - ВГЭ

1 90 10 91,98 8,02 68,5

2 75 25 79,93 20,07 56,7

3 50 50 67,95 32,05 46,2

4 25 75 55,08 44,92 38,1

5 10 90 46,45 53,55 32,5

обладают более низкой реакционной способностью в радикальной сополимеризации, чем Ст. Такая картина действительно наблюдается для сополимеров Ст - ВГЭ. Они обогащены звеньями Ст во всем исследованном интервале исходных смесей, при этом содержание звеньев ВГЭ в составе сополимеров возрастает симбатно его количеству в мономерной смеси (табл. 1).

Для сополимеров Ст - АГЭ наблюдается

иная картина. При любом составе исходной мономерной смеси содержание звеньев Ст и АГЭ в сополимерах практически одинаково и составляет от 40 до 64% мол., что свидетельствует об образовании продуктов, близких к чередующимся (табл. 1).

Как показывает анализ литературных дан ных, для АГЭ характерно протекание процессов чередующейся сополимеризации с достаточно

Таблица 2

Общие закономерности сополимеризации ВХ - НГЭ в растворе толуола

(ДАК 1 % масс., 60 °С, 2 ч)

Состав исходной смеси, % мол. Состав сополимера, % мол. Выход, % Вязкость [Г|], дл/г

ВХ НГЭ ВХ НГЭ

Система ВХ - АГЭ

95,0 5,0 96,79 3,21 3,19 0,20

90,0 10,0 93,92 6,08 2,88 0,15

85,0 15,0 87,92 10,58 2,56 0,08

73,7 26,3 76,19 23,81 2,69 0,04

30,1 69,9 44,69 55,31 2,48 0,04

Система ВХ - ВГЭ

95,0 5,0 95,55 4,45 3,78 0,29

90,0 10,0 92,44 7,56 3,45 0,26

80,0 20,0 88,44 11,56 3,01 0,22

75,0 25,0 78,79 21,21 2,91 0,17

25,0 75,0 36,62 63,38 2,23 0,13

широким кругом мономеров [например, 11, 12]. Это объясняется образованием комплексов с переносом заряда между АГЭ и вторым сомоно-мером, в которых АГЭ играет роль донора. Однако исследование бинарной радикальной сополимеризации АГЭ с ВХ, проведенное авторами , не выявило образования чередующихся сополимеров (табл. 2).

Образование чередующихся сополимеров при сополимеризации АГЭ со Ст можно связать с образованием комплексов с переносом заряда между эпоксигруппой АГЭ и ароматическим кольцом стирола. Образующийся комплекс далее играет роль «индивидуального мономера» в сополимеризации, что приводит к получению продуктов чередующейся структуры.

Выходы продуктов, в общем, уменьшаются

с ростом содержания звеньев малоактивных мономеров в составе сополимеров (табл. 1), что обусловлено увеличением концентрации НГЭ в исходной смеси сомономеров. Повышение концентрации малоактивного мономера увеличивает его содержание в сополимере, но уменьшает суммарную скорость роста цепи и, следовательно, снижает выход продукта и его молекулярную массу. Данное рассуждение подтверждают значения относительной вязкости растворов сополимеров (например, Ст-АГЭ) и их зависимость от содержания эфиров в исходной смеси (рис. 2).

Расчет констант относительной активности мономеров (констант сополимеризации) для исследованных систем проводили разными методами. Константы сополимеризации системы

Рис. 2 Зависимость относительной вязкости сополимеров Ст - АГЭ от содержания АГЭ в исходной смеси

Таблица 3

Константы сополимеризации и средние длины блоков звеньев Ст ^^ _и НГЭ ^2) в составе сополимеров_

Система M1 m1 r Li L2

Система Ст - АГЭ 0,70 0,47 r1 = 0,09 1 1

0,50 0,92 r2 = 0,05 21 1

0,75 0,20 n1 = 1,13 ± 0,09 n2 = 0,22 ± 0,02 10 1

Система Ст - ВГЭ 0,50 0,32 9 1

Ст - АГЭ рассчитывали на основании данных функционального анализа нелинейным методом наименьших квадратов в пакете MathCAD 11 Enterprise Edition, позволяющим проводить расчеты по любым наборам экспериментальных данных. Константы сополимеризации для системы Ст - ВГЭ рассчитывали стандартными методами Файнмана - Росса и Келена - Тюдо-ша с использованием метода планирования эксперимента по Мортимеру и Тидвелу . Значения констант сополимеризации представлены в табл. 3. На основании значений констант сополимеризации были определены параметры микроструктуры сополимеров, которые также приведены в табл. 3.

Полученные значения констант сополимеризации подтверждают сделанное ранее заключение о различной реакционной способности НГЭ в процессах сополимеризации со Ст. Для системы Ст - АГЭ величины рассчитанных констант сополимеризации близки к нулю, что характерно для чередующихся сополимеров. Расчет микроструктуры данных сополимеров показал, что независимо от состава исходной смеси получаются практически строго чередующиеся продукты (табл. 3).

Значения констант относительной активности для сополимеров Ст - ВГЭ свидетельствуют о меньшей реакционной способности ВГЭ в радикальной сополимеризации по сравнению со Ст. ВГЭ присутствует в структуре данных со-

полимеров только в виде единичных звеньев, а длина блоков звеньев Ст в сополимерах закономерно уменьшается со снижением доли Ст в исходной смеси.

Таким образом, структура сополимеров Ст и НГЭ, по-видимому, может быть отражена следующей формулой:

- // ЖПХ. 1998 Т. 71, № 7. С. 1184-1188.

2. Винилглицидиловые эфиры гликолей - перспективные мономеры для полимеризационных процессов / Л.С. Григорьева [и др.]. Л.: Изд-во ЛТИ, 1982. 9 с.

3. Раскулова Т.В. Сополимеризация винилга-логенидов с функционально замещенными виниловыми мономерами: дис... д-ра хим. наук: 02.00.06: защищена 21.04.2010: утв. 08.10.2010. Иркутск, 2010. 315 с.

4. Покровская М.А., Раскулова Т.В. Сополимеризация аллилглицидилового эфира со стиролом // Вестник АГТА. 2011. № 5. С. 87-89.

5. Surface functionalization of Si3N4 nanoparticles by graft polymerization of glycidyl methacrylate and styrene / Luo Ying // J. Appl. Polym. Sci. 2006. V. 102. № 2. P. 992.

6. Tan Chung-Sung, Kuo Ting-Wu. Synthesis of polycarbonate-silica nanocomposites from copolymeriza-tion of CO2 with allyl glycidyl ether, cyclohexene oxide, and sol-gel // J. Appl. Polym. Sci. 2005. V. 98. № 2. P. 750.

7. Формирование композитов на основе ви-нилглицидилового эфира этиленгликоля и винилхло-рида / О.В. Лебедева [и др.] // Пластические массы. 2013. № 9. С. 35-39.

8. Калинина М.С. Анализ конденсационных полимеров. М.: Наука, 1983. 296 с.

9. Практическое руководство по определению молекулярных весов и молекулярно-массового распределения полимеров / А.И. Шатенштейн [и др.]. М.: Химия, 1964. 188 с.

10. Фракционирование полимеров / под ред. М. Кантова. М.: Мир, 1971. 444 с.

11. Heatley F., Lovell P.A., McDonald J. NMR-studies of free-radical polymerization and copolymeriza-tion of monomers and polymers containing allyl groups // Eur. Polym. J. 2. 1993. V. 29, № 2. Р. 255.

12. Yu Qing-bo, Bai Ru-ke, Zhang Ming-Хи. Живая радикальная сополимеризация аллилглицидилового эфира с метилакрилатом в присутствии бензилими-дазол-1-карбодитионата // Anhui ligong daxue xuebao. Ziran kexue ban; J. Anhui Univ. Sci. and Technol. Natur. Sci. 2006. V. 26, № 3. P. 56.

13. Эффект предпоследнего звена в сополимеризации винилхлорида и непредельных глицидило-вых эфиров / Т.В. Раскулова [и др.] // Высокомолекулярные соединения А. 2000. Т. 42, № 5. С. 744-750.

14. Tidwell P.W., Mortimer G.A. An Improved Method of Calculating Copolymerization Reactivity Ratios // J. Polym. Sci. A. 1965. V. 3. P. 369.

Радикальную сонолимеризацию обычно инициируют теми же способами, что и радикальную полимеризацию. Для нее характерны те же механизмы роста, обрыва и передачи цепи.

Рассмотрим сополимеризацию двух мономеров М, и М 2 . Если активность радикалов роста определяется только типом концевого звена, то следует учитывать четыре элементарные реакции роста:

Соответствующие скорости элементарных стадий роста цепи можно записать как


Кинетика реакции роста цепи определяет состав сополимеров и весь комплекс их химических и физико-механических свойств. Модель, в которой учитывается влияние концевого звена на реакционную способность активного центра по отношению к молекулам мономеров и рассматриваются четыре элементарные реакции растущей цепи с разным типом концевого звена (М*) с мономером (М (), получила название «модель концевого звена» сополиме- ризации. Эту модель независимо друг от друга предложили в 1944 г. американские химики Ф. Майо и Ф. Льюис. Кинетическая обработка приведенной схемы в квазистационарпом приближении позволяет установить взаимосвязь между составом сополимеров и составом исходной смеси мономеров, т.е. уравнение, которое описывает состав «мгновенного» сополимера, а также состав сополимера, образующегося на начальных конверсиях, когда изменением концентраций мономеров можно пренебречь.

Допущения, необходимые для вывода уравнения состава сополимера (зависимости состава сополимера от состава мономерной смеси), включают:

  • 2) реакционная способность М* и М: * не зависит от Р п;
  • 3) условие квазистационарности: концентрации М* и М* остаются постоянными, если скорости их взаимного превращения одинаковы, т.е. V p |2 = К р 21 ;

4) малые конверсии.

Скорости превращения мономеров при сополимеризации описываются уравнениями


где от, и т 2 - концентрации мономерных звеньев в сополимере.

Отношение скоростей этих реакций приводит к выражению

С учетом условия стационарности для концентраций радикалов несложно получить следующее выражение, характеризующее на начальных стадиях превращения, когда можно пренебречь изменением концентрации мономеров [М,] и [М 2 ], зависимость состава получаемого сополимера от состава мономерной смеси:


где k iV k 22 - константы скорости присоединения радикалом своего мономера; k vl , k. n - константы скорости присоединения радикалом чужого мономера; г, = k n /k l2 , r 2 = k 22 /k 2l - константы сополимеризации, зависящие от химической природы реагирующих мономеров.

Часто вместо концентраций используют соответствующие им мольные доли. Обозначим через/, и / 2 мольные доли сомономеров в смеси, а через F { и F 2 - мольные доли звеньев М { и М 2 в сополимере:


Тогда, комбинируя выражения (5.28)-(5.30), получаем


Зависимость состава сополимеров от состава смеси мономеров удобно характеризовать диаграммой состава (рис. 5.1). При r { > 1 и r 2 1 сополимер обогащен звеньями Mj (кривая 1) при r x 1 и r 2 > 1 сополимер обогащен звеньями М. ; (кривая 2). Если г, = r 2 = 1, то состав сополимера всегда равен составу исходной смеси (прямая 3).

Рис. 5.1.

Если r { r { > 1 и r 2 > 1, то наблюдается тенденция к раздельной полимеризации мономеров в смеси (кривая 5). Если кривая состава пересекает диагональ диаграммы составов, то в точке пересечения, называемой азеотропной , состав сополимера равен составу сомономерной смеси.

Свойства бинарных сополимеров зависят от среднего состава сополимера, его композиционной неоднородности и распределения мономерных звеньев в макромолекулах. При одном и том же составе распределение звеньев по цепи может быть различным (блочным, статистическим, чередующимся или градиентным). Состав отдельной макромолекулы может отличаться от среднего состава всего образца, что приводит к композиционной неоднородности сополимера. Различают мгновенную и конверсионную неоднородность сополимеров. Мгновенная композиционная неоднородность возникает в результате статистического характера процесса. Конверсионная композиционная неоднородность обусловлена изменением состава мономерной смеси в ходе сополимеризации (кроме азеотропной сополимеризации), ее вклад в общую композиционную неоднородность гораздо выше, чем вклад мгновенной неоднородности.

При сополимеризации на глубоких стадиях превращения состав мономерной смеси (кроме случая азеотропной сополимеризации) непрерывно меняется но ходу реакции: относительное содержание более активного мономера убывает, а менее активного - возрастает (рис. 5.2).


Рис. 5.2. Зависимость состава сополимера от состава мономерной смеси для случаев одностороннего обогащения (кривая 1: r,> 1; r 2 2: r x 1; r 2 > 1)

Для одного и того же состава мономерной смеси (рис. 5.2, точка А) образуются продукты с различным содержанием первого компонента: соответствующим в первом случае - точке В во втором - точке D". В ходе реакции мольная доля М, будет постоянно изменяться: в первом случае - уменьшаться, во втором - увеличиваться. Одновременно с этим будут изменяться мгновенные составы образующихся сополимеров: в первом случае будет происходить постоянное обеднение сополимера звеньями М р во втором - обогащение звеньями М,. В обоих случаях накапливаются продукты различных «мгновенных» составов, что и приводит к возникновению конверсионной композиционной неоднородности образующегося сополимера. Однако средний состав конечного продукта в обоих случаях будет одним и тем же: при 100% превращения он равен составу мономерной смеси и соответствует точке С.

При сополимеризации с тенденцией к чередованию (см. рис. 5.1, кривая 4) для произвольного состава исходной мономерной смеси на кривой состава имеется две области составов: одна лежит выше днагона.!и, вторая - ниже этой диагонали. Их разделяет точка азеотропа ( ), которая находится на пересечении кривой состава с диагональю. За исключением точки азеотропа, в ходе сополимеризации происходит изменение мгновенных составов сополимера по кривой вправо. Таким образом, и в этом случае сополимеризация на глубоких конверсиях приводит к композиционно неоднородным продуктам.

Исключение составляет азеотропная сополимеризация мономерной смеси, в ходе которой составы сополимера и мономерной смеси не изменяются по ходу реакции и остаются равными исходному составу мономерной смеси вплоть до полного исчерпания мономеров. Неизменность состава сополимера в ходе азеотропной сонолимеризации приводит к получению однородных продуктов, композиционная неоднородность которых минимальна и связана только с ее мгновенной составляющей. Условие образования азеотропного состава имеет вид

Величины Г[ и г 2 могут быть определены экспериментально. Знание их позволяет предсказать состав сополимера и распределение мономерных звеньев в цепях при любом соотношении мономеров в смеси. Значения г, и г 2 при радикальной сонолимеризации и, следовательно, состав сополимера обычно слабо зависят от природы растворителя и очень мало меняются с температурой.

Исключение составляют:

  • 1) явления, связанные с донорно-акцепторными взаимодействиями реагентов. Если один из мономеров оказывается сильным донором, а другой - сильным акцептором, образуются чередующиеся сополимеры (стирол - малеиновый ангидрид, г, = 0 и г 2 = 0);
  • 2) соиолимеризация ионогенных мономеров в зависимости от pH (акриловая кислота - акриламид, pH = 2, г, = 0,9 и г 2 = 0,25; pH = 9, г, = 0,3 и г 2 = = 0,95);
  • 3) соиолимеризация пары «полярный мономер - неполярный мономер» в полярном и неполярном растворителях (bootstrap effect, стирол - н-бутил- акрилат, г, = 0,87 и г 2 = 0,19 в массе и г, = 0,73 и г 2 = 0,33 в ДМФА; 2-гидро- ксиметилметакрилат - трет- бутилакрилат, г, = 4,35 и г 2 = 0,35 в массе и г, = = 1,79 и г 2 = 0,51 в ДМФА);
  • 4) гетерофазная соиолимеризация. При гетерофазной сонолимеризации избирательная сорбция одного из мономеров полимерной фазой может привести к отклонению от состава, характерного для гомогенной сополиме- ризации той же нары (стирол - акрилонитрил: соиолимеризация в массе и в эмульсии; ММ А - N-винилкарбазол в бензоле г, = 1,80 и г 2 = 0,06, в метаноле г, = 0,57 и г 2 = 0,75).

Рассмотрение величин г, и г 2 в рамках теории идеальной радикальной реакционной способности приводит к заключению, что r, r 2 = 1, т.е. константы скоростей присоединения одного из мономеров к обоим радикалам в одинаковое число раз больше констант скоростей присоединения другого мономера к этим радикалам. Имеется ряд систем, для которых это условие хорошо реализуется на опыте. В таких случаях мономерные звенья обоих типов располагаются в макромолекулах случайно. Чаще всего г, г., 1, что связано с полярными и стерическими эффектами, которые обусловливают тенденцию к чередованию мономерных звеньев М, и М 2 в макромолекулах. В табл. 5.12 приведены значения констант сополимеризации для некоторых пар мономеров. Сопряжение с заместителем снижает активность радикала в большей степени, чем повышает активность мономера, поэтому мономер более активный в сополимеризации оказывается менее активным в гомонолимеризации.

Для количественной характеристики реакционной способности мономеров в радикальной сополимеризации используется нолуэмпирическая

Константы радикальной сополимсризации некоторых мономеров

схема Q-e, предложенная в 1947 г. американскими химиками Т. Алфреем и К. Прайсом. В рамках данной схемы принимают, что

где Р Q- параметры, соответствующие энергиям сопряжения в мономере и радикале согласно теории идеальной радикальной реакционной способности. Величины е { и е 2 учитывают поляризацию реагирующих мономеров. Тогда

Используя эту схему, удалось оценить относительную реакционную способность мономеров и роль полярных факторов для большого числа пар сополимеризующихся мономеров.

За стандартный мономер был принят стирол со значениями Q = 1, е = 0,8. При сополимеризации стирола с другими мономерами (М) последние были охарактеризованы своими значениями Q. и е~, что дало возможность предсказать поведение этих мономеров в реакциях сополимеризации с другими мономерами, для которых также были установлены значения Q и е.

Для активных радикалов активность мономеров зависит от резонансных факторов. С увеличением Q константа k l2 увеличивается. Для неактивных радикалов (стирол, бутадиен) активность мономеров зависит от полярности. В табл. 5.13 приведены значения Qn е некоторых мономеров.

Таблица 5.13

Значения Q и е некоторых мономеров

Включайся в дискуссию
Читайте также
День памяти участников первой мировой войны в доме рио День памяти воинов первой мировой войны
Алкены — Гипермаркет знаний
Урок