Подпишись и читай
самые интересные
статьи первым!

Вычитание пятизначных чисел в столбик. Вычитание натуральных чисел столбиком, примеры, решения

Является немало важной даже в повседневной жизни. Вычитание часто может пригодиться при подсчете сдачи в магазине. Например, у вас с собой одна тысяча (1000) рублей, а ваши покупки составляют 870. Вы, еще не расплатившись, поинтересуетесь: «А сколько же сдачи у меня останется?». Так вот, 1000-870 и будет 130. И таких подсчетов много разных и не освоив эту тему, будет трудно в реальной жизни.Вычитание – это арифметическое действие, в процессе которого из первого числа вычитается второе число, а итогом будет третье.

Формула сложения выражается так: a - b = c

a – яблок у Васи изначально.

b – количество яблок отданных Пете.

c – яблок у Васи после передачи.

Подставим в формулу:

Вычитание чисел

Вычитание чисел легко освоить любому первокласснику. Например, из 6 нужно вычесть 5. 6-5=1, 6 больше числа 5 на единицу, значит, и ответ будет единицей. Можно для проверки произвести сложение 1+5=6. Если вы не знакомы со сложением, то можете прочитать нашу .

Большое число делится на части, возьмем число 1234, а в нем: 4-единицы, 3-десятки, 2-сотни, 1-тысячи. Если вычитать единицы, то все легко и просто. Но допустим пример: 14-7. В числе 14: 1-десяток, а 4- единицы. 1 десяток – 10 единиц. Тогда получаем 10+4-7, сделаем так: 10-7+4, 10 – 7 =3, а 3+4=7. Ответ найден верно!

Рассмотрим пример 23 -16. Первое число 2 десятка и 3 единицы, а второе 1 десяток и 6 единиц. Представим число 23 как 10+10+3, а 16 как 10+6, тогда представим 23-16 как 10+10+3-10-6. Тогда 10-10=0, останется 10+3-6, 10-6=4, тогда 4+3=7. Ответ найден!

Аналогично делается с сотнями и тысячами

Вычитание столбиком

Ответ: 3411.

Вычитание дробей

Представим арбуз. Арбуз – это одно целое, а разрезав пополам, мы получим что-то меньшее, чем единица верно? Половинка единицы. Как это записать?

½, так мы обозначаем половину одного целого арбуза, а если поделить арбуз на 4 равные части, то каждая из них будет обозначаться ¼. И так далее…

вычитание дробей, как это?

Все просто. Вычтем из 2/4 ¼ -ую. При вычитании важно, чтобы знаменатель(4) одной дроби совпадал со знаменателем второй. (1) и (2) – называются числителями.

Итак, вычитаем. Убедились, что знаменатели одинаковые. Тогда вычитаем числители (2-1)/4, так получаем 1/4.

Вычитание пределов

Вычитание пределов – это не сложно. Тут достаточно простой формулы, в которой говорится, что если предел разности функций стремится к числу а, то это равносильно разности этих функций, предел каждой из которых стремится к числу а.

Вычитание смешанных чисел

Смешанное число - это целое число с дробной частью. То есть если числитель меньше знаменателя – то дробь меньше единицы, а если числитель больше знаменателя, то дробь больше единицы. Смешанное число - это дробь, которая больше единицы и у которой выделена целая часть, изобразим на примере:

Чтобы произвести вычитание смешанных чисел, нужно:

    Привести дроби к общему знаменателю.

    Целую часть внести в числитель

    Произвести вычисление

Урок вычитание

Вычитание – это арифметическое действие, в процессе которого ищется разность 2 чисел и ответов является третье.Формула сложения выражается так: a - b = c .

Примеры и задачи Вы сможете найти ниже.

При вычитании дробей следует помнить, что:

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Вычитание 1 класс

Первый класс – начало пути, начало обучения и изучения основ, в том числе и вычитания. Обучение стоит вести в игровой форме. Всегда в первом классе вычисления начинают с простых примеров на яблоках, конфетах, грушах. Используется этот метод не зря, а потому что детям намного интереснее, когда с ними играют. И это не единственная причина. Яблоки, конфеты и тому подобное дети видели очень часто в свой жизни и имели дело с передачей и количеством, поэтому научить сложению таких вещей будет не сложно.

Задачи на вычитание первоклассникам можно придумать целую тучу, к примеру:

Задача 1. Утром, гуляя по лесу ежик нашел 4 грибочка, а вечером, когда пришел домой, ежик на ужин скушал 2 грибочка. Сколько грибочков осталось?

Задача 2. Маша пошла в магазин за хлебом. Мама дала маше 10 рублей, а хлеб стоит 7 рублей. Сколько Маша должна принести денег домой?

Задача 3. В магазине утром на прилавке находилось 7 килограмм сыра. До обеда посетители выкупили 5 килограмм. Сколько килограмм осталось?

Задача 4. Рома вынес во двор конфеты, который дал ему папа. У Ромы было 9 конфет, а своему другу Никите он дал 4. Сколько конфет осталось у Ромы?

Первоклассники в основном решают задачи, в которых ответом будет число от 1 до 10.

Вычитание 2 класс

Второй класс это уже выше первого, а соответственно и примеры для решения тоже. Итак, приступим:

Числовые задания:

Однозначные числа:

  1. 10 - 5 =
  2. 7 - 2 =
  3. 8 - 6 =
  4. 9 - 1 =
  5. 9 - 3 - 4 =
  6. 8 - 2 - 3 =
  7. 9 - 9 - 0 =
  8. 4 - 1 - 3 =

Двузначные числа:

  1. 10 - 10 =
  2. 17 - 12 =
  3. 19 - 7 =
  4. 15 - 8 =
  5. 13 - 7 =
  6. 64 - 37 =
  7. 55 - 53 =
  8. 43 - 12 =
  9. 34 - 25 =
  10. 51 - 17 - 18 =
  11. 47 - 12 - 19 =
  12. 31 - 19 - 2 =
  13. 99 - 55 - 33 =

Текстовые задачи

Вычитание 3-4 класс

Суть вычитания в 3-4 классе – вычитание в столбик больших чисел.

Рассмотрим пример 4312-901. Для начала запишем числа друг под другом, так чтобы из числа 901 единица была под 2, 0 под 1, 9 под 3.

Затем производим вычитание справа налево, то есть из числа 2 число 1. Получаем единицу:

Вычитая из тройки девять, нужно позаимствовать 1 десяток. То есть из 4 вычитаем 1 десяток. 10+3-9=4.

А так как у 4 заняли 1, то 4-1=3

Ответ: 3411.

Вычитание 5 класс

Пятый класс – это время для работы над сложными дробями с разными знаменателями. Повторим правила:1. Вычитаются числители, а не знаменатели.

Итак, вычитаем. Убедились, что знаменатели одинаковые. Тогда вычитаем числители (2-1)/4, так получаем 1/4. При складывании дробей, вычитаются только числители!

2. Чтобы осуществить вычитание, убедитесь, что знаменатели равны.

Попалась разность дробей, к примеру, 1/2 и 1/3, то домножить придется не одну дробь, а обе, чтобы привести к общему знаменателю. Самый простой способ сделать это: первую дробь умножить на знаменатель второй, а вторую дробь на знаменатель первой, получаем: 3/6 и 2/6. Складываем (3-2)/6 и получаем 1/6.

3. Сокращение дроби производится путем деления числителя и знаменателя на одинаковое число.

Дробь 2/4 можно привести к виду ½. Почему? Что из себя представляет дробь? ½ = 1:2, а если делить 2 на 4, то это тоже самое, что делить 1 на 2. Поэтому дробь 2/4 = 1/2.

4. Если дробь больше единицы, то можно выделить целую часть.

Дана дробь 7/4, получаем, что 7 больше 4, а значит 7/4 больше 1. Как выделить целую часть? (4+3)/4, далее получаем сумму дробей 4/4 + 3/4, 4:4 + 3/4=1 + 3/4. Итог: одна целая, три четвертых.

Вычитание презентация

Ссылка на презентацию находится ниже. Презентация рассматривает основные вопросы вычитания шестого класса:Скачать презентацию

Презентация сложение и вычитание

Примеры на сложение и вычитание

Игры на развитие устного счета

Специальные развивающие игры разработанные при участии российских ученых из Сколково помогут улучшить навыки устного счета в интересной игровой форме.

Игра "Быстрый счет"

Игра «быстрый счет» поможет вам усовершенствовать свое мышление . Суть игры в том, что на представленной вам картинке, потребуется выбрать ответ «да» или «нет» на вопрос «есть ли 5 одинаковых фруктов?». Идите за своей целью, а поможет вам в этом данная игра.

Игра "Математические матрицы"

«Математические матрицы» великолепное упражнение для мозга детей , которое поможет вам развить его мыслительную работу, устный счет, быстрый поиск нужных компонентов, внимательность. Суть игры заключается в том, что игроку предстоит из предложенных 16 чисел найти такую пару, которая в сумме даст данное число, например на картинке ниже данное число «29», а искомая пара «5» и «24».

Игра "Числовой охват"

Игра «числовой охват» нагрузит вашу память во время занятий с данным упражнением.

Суть игры – запомнить цифру, на запоминание которой отводится около трех секунд. Затем нужно ее воспроизвести. По мере прохождения этапов игры, количество цифр растет, начинаете с двух и далее.

Игра "Математические сравнения"

Прекрасная игра, с которой вы сможете расслабиться телом, а напрячься мозгом. На скриншоте показан пример данной игры, в которой будет вопрос, связанный с картинкой, а вам надо будет ответить. Время ограниченно. Как много вы успеете ответить?

Игра "Угадай операцию"

Игра «Угадай операцию» развивает мышление и память. Главная суть игры надо выбрать математический знак, чтобы равенство было верным. На экране даны примеры, посмотрите внимательно и поставьте нужный знак «+» или «-», так чтобы равенство было верным. Знак «+» и «-» расположены внизу на картинке, выберите нужный знак и нажмите на нужную кнопку. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Упрощение"

Игра «Упрощение» развивает мышление и память. Главная суть игры надо быстро выполнить математическую операцию. На экране нарисован ученик у доски, и дано математическое действие, ученику надо посчитать этот пример и написать ответ. Внизу даны три ответа, посчитайте и нажмите нужное вам число с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Визуальная геометрия"

Игра «Визуальная геометрия» развивает мышление и память. Главная суть игры быстро считать количество закрашенных объектов и выбрать его из списка ответов. В этой игре на экране на несколько секунд показываются синие квадратики, их надо быстро посчитать, потом они закрываются. Снизу под таблицей написаны четыре числа, надо выбрать одно правильное число и нажать на него с помощью мышки. Если вы ответили правильно, вы набираете очки и продолжаете играть дальше.

Игра "Копилка"

Игра «Копилка» развивает мышление и память. Главная суть игры выбрать, в какой копилке больше денег.В этой игре даны четыре копилки, надо посчитать в какой копилке больше денег и показать с помощью мышки эту копилку. Если вы ответили правильно, то вы набираете очки и продолжаете играть дальше.

Развитие феноменального устного счета

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Скорочтение за 30 дней

Увеличьте скорость чтения в 2-3 раза за 30 дней. Со 150-200 до 300-600 слов в минуту или с 400 до 800-1200 слов в минуту. В курсе используются традиционные упражнения для развития скорочтения, техники ускоряющие работу мозга, методика прогрессивного увеличения скорости чтения, разбирается психология скорочтения и вопросы участников курса. Подходит детям и взрослым, читающим до 5000 слов в минуту.

Развитие памяти и внимания у ребенка 5-10 лет

Цель курса: развить память и внимание у ребенка так, чтобы ему было легче учиться в школе, чтобы он мог лучше запоминать.

После прохождения курса ребенок сможет:

  1. В 2-5 раз лучше запоминать тексты, лица, цифры, слова

    Деньги и мышление миллионера

    Почему бывают проблемы с деньгами? В этом курсе мы подробно ответим на этот вопрос, заглянем вглубь проблемы, рассмотрим наши взаимоотношения с деньгами с психологической, экономической и эмоциональных точек зрения. Из курса Вы узнаете, что нужно делать, чтобы решить все свои финансовые проблемы, начать накапливать деньги и в дальнейшем инвестировать их.

    Знание психологии денег и способов работы с ними делает человека миллионером. 80% людей при увеличении доходов берут больше кредитов, становясь еще беднее. С другой стороны миллионеры, которые всего добились сами, снова заработают миллионы через 3-5 лет, если начнут с нуля. Этот курс учит грамотному распределению доходов и уменьшению расходов, мотивирует учиться и добиваться целей, учит вкладывать деньги и распознавать лохотрон.

Сегодня в большинстве случаев дети осваивают простейшие математические действия еще в дошкольном возрасте. Родители стараются самостоятельно обучить малышей основам математики, чтобы при поступлении в школу у них уже была сформирована небольшая, но основательная база знаний. Одним из навыков, которые можно легко изучить дома, является счет в столбик.

Подготовка к обучению

Прежде чем начать изучение счета в столбик, родителям необходимо удостовериться в готовности ребенка к занятиям. В первую очередь юный математик должен без проблем считать от 0 до 10 и легко различать все эти числа на письме. Если навык еще не закреплен или вообще не освоен, нужно обязательно заняться восполнением пробела. Наиболее эффективные методики представлены в статье « ».





Кроме того, ребенок уже должен понимать принципы простых математических действий, а именно сложения и вычитания. Тренироваться следует ежедневно, оттачивая навыки на находящихся рядом предметах — игрушках, конфетах, яблоках, счетных палочках и т. д. Как только ребенок будет достаточно уверенно складывать и вычитать однозначные числа, можно переходить к более сложным задачам.

Считаем в столбик

Понятно, что сложение и вычитание однозначных чисел в столбик бессмысленно — эти действия ребенок, как правило, выполняет в уме. Сложности же возникают при работе с двузначными числами — начинающему математику трудно сконцентрироваться и просчитать все без визуального представления. В этом случае на помощь ребенку приходит проверенная несколькими поколениями методика — счет в столбик.


Конечно, учителя математика знают, как научить ребенка считать столбиком, а вот родители чаще всего даже не представляют, с чего начать занятия. А начинать надо с базы — объяснения такого математического понятия, как разрядность. Ребенку важно понимать, каким образом составляются двузначные (а затем — и трехзначные) числа и как они записываются при счете столбиком. Сразу же можно выполнять очень простое, но эффективное упражнение — запись в столбик однозначных и двузначных чисел. Задача такого упражнения — научить ребенка правильно располагать числа с разной разрядностью друг под другом. Малыш должен понимать, что единицы пишутся под единицами, десятки — под десятками, сотни — под сотнями и т. д.


Освоив этот базовый навык, ребенок может переходить к следующему этапу — непосредственно счету. Необходимо объяснить малышу, что складывать и вычитать числа нужно по разрядам — единицы с единицами, десятки с десятками, сотни с сотнями. Причем счет нужно вести обязательно от единиц, т. е. справа налево.


Некоторые трудности возникают при сложении чисел, цифры которых в сумме дают больше «10», например, 24 + 18. Ребенку нужно рассказать, что в данном случае сумма единиц — «4» и «8» составляет «12». При этом под единицами в итоговой сумме записать нужно тоже только единицу, т. е. «2». А десятки — «1» — необходимо «оставить в уме». При сложении уже десятков — «2» и «1» в данном примере — нужно обязательно добавить и «оставленную в уме» десятку, т. е. «1». В итоге сложение десятков выглядит как 2 + 1 + 1 и дает в сумме «4». Конечная сумма составляет «42». Аналогичные действия необходимо совершать и при вычитании, когда цифры уменьшаемого меньше цифр вычитаемого. Например, 41 — 15. Только в этом случае нужно «оставленные в уме» цифры не добавлять, а отнимать.

Итак, сама по себе методика обучения ребенка счету в столбик достаточно понятна. Но помимо нее, родителям следует ознакомиться с общими советами, которые помогут сделать занятия с малышом более эффективными:


  • Будьте последовательными и терпеливыми . Многие взрослые считают, что определяются возрастом и скоростью освоения нового учебного материала. Однако заставлять детей заниматься по ускоренной программе не стоит. До счета в столбик нужно «дорасти», изучив сначала основы, о которых уже было сказано выше.

  • Повторение — мать учения. Успех занятий зависит от количества времени, посвященного практике. При каждом удобном случае обращайтесь к ребенку «за помощью» — просите его посчитать числа в столбик и обязательно благодарите, когда получите результат.

  • Используйте дополнительные материалы . Детские книжки по математике, рабочие тетради, схемы и картинки помогут детям быстрее усвоить материал, т.к., как правило, они лучше воспринимают информацию, представленную наглядно.

  • Переведите учебу в игру. Этот совет является универсальным для всех учебных занятий. Если у вас есть возможность включить в процесс обучения игровой элемент, ребенок будет более внимательным и увлеченным.

Важно понимать, что умение считать в столбик не определяет . Поэтому не стоит предъявлять к малышу высокие требования — он обязательно сможет самостоятельно выполнить математические действия столбиком, когда сам будет к этому готов.

Удобно проводить особым методом, который получил название вычитание столбиком или вычитание в столбик . Этот способ вычитания оправдывает свое название, так как уменьшаемое, вычитаемое и разность записываются в столбик. Промежуточные вычисления также проводятся в столбиках, соответствующих разрядам чисел.

Удобство вычитания натуральных чисел столбиком заключается в простоте вычислений. Вычисления сводятся к использованию таблицы сложения и применению свойств вычитания.

Давайте разберемся, как выполняется вычитание столбиком. Процесс вычитания будем рассматривать вместе с решением примеров. Так будет понятнее.

Навигация по странице.

Что необходимо знать для вычитания столбиком?

Для вычитания натуральных чисел столбиком необходимо знать, во-первых, как выполняется вычитание с помощью таблицы сложения .

Наконец, не помешает повторить определение разряда натуральных чисел .

Вычитание столбиком на примерах.

Начнем с записи. Сначала записывается уменьшаемое. Под уменьшаемым располагается вычитаемое. Причем делается это так, что цифры оказываются одна под другой, начиная справа. Слева от записанных чисел ставится знак минус, а внизу проводится горизонтальная линия, под которой будет записан результат после проведения необходимых действий.

Приведем несколько примеров правильных записей при вычитании столбиком. Запишем в столбик разность 56−9 , разность 3 004−1 670 , а так же 203 604 500−56 777 .

Итак, с записью разобрались.

Переходим к описанию процесса вычитания столбиком. Его суть заключается в последовательном вычитании значений соответствующих разрядов. Сначала вычитаются значения разряда единиц, далее – значения разряда десятков, далее – значения разряда сотен и т.д. Результаты записываются под горизонтальной линией на соответствующих местах. Число, которое образуется под линией после завершения процесса, является искомым результатом вычитания двух исходных натуральных чисел.

Представим схему, иллюстрирующую процесс вычитания столбиком натуральных чисел.

Приведенная схема дает общую картину вычитания натуральных чисел столбиком, однако она не отражает всех тонкостей. С этими тонкостями разберемся при решении примеров. Начнем с самых простых случаев, а дальше будем постепенно продвигаться к более сложным случаям, пока не разберемся со всеми нюансами, которые могут встретиться при вычитании столбиком.

Пример.

Для начала вычтем столбиком из числа 74 805 число 24 003 .

Решение.

Запишем эти числа так, как этого требует метод вычитания столбиком:

Начинаем с вычитания значений разрядов единиц, то есть, вычитаем из числа 5 число 3 . Из таблицы сложения имеем 5−3=2 . Записываем полученные результат под горизонтальную черту в этом же столбике, в котором находятся числа 5 и 3 :

Теперь вычитаем значения разряда десятков (в нашем примере они равны нулю). Имеем 0−0=0 (это свойство вычитания мы упоминали в предыдущем пункте). Записываем полученный нуль под линию в том же столбике:

Идем дальше. Вычитаем значения разряда сотен: 8−0=8 (по свойству вычитания, озвученному в предыдущем пункте). Теперь наша запись примет следующий вид:

Переходим к вычитанию значений разряда тысяч: 4−4=0 (это свойств вычитания равных натуральных чисел). Имеем:

Осталось вычесть значения разряда десятков тысяч: 7−2=5 . Записываем полученное число под черту на нужное место:

На этом вычитание столбиком завершено. Число 50 802 , которое получилось внизу, является результатом вычитания исходных натуральных чисел 74 805 и 24 003 .

Рассмотрим следующий пример.

Пример.

Отнимем столбиком от числа 5 777 число 5 751 .

Решение.

Делаем все так же, как в предыдущем примере – вычитаем значения соответствующих разрядов. После завершения всех шагов запись примет следующий вид:

Под чертой получили число, в записи которого слева находятся цифры 0 . Если эти цифры 0 отбросить, то получим результат вычитания исходных натуральных чисел. В нашем случае отбрасываем две цифры 0 , получившиеся слева. Имеем: разность 5 777−5 751 равна 26 .

До этого момента мы вычитали натуральные числа, записи которых состоят из одинакового количества знаков. Сейчас на примере разберемся, как вычитаются столбиком натуральные числа, когда в записи уменьшаемого больше знаков, чем в записи вычитаемого.

Пример.

Вычтем из числа 502 864 число 2 330 .

Решение.

Записываем уменьшаемое и вычитаемое в столбик:

По очереди вычитаем значения разряда единиц: 4−0=4 ; далее – десятков: 6−3=3 ; далее – сотен: 8−3=5 ; далее – тысяч: 2−2=0 . Получаем:

Теперь, чтобы завершить вычитание столбиком, нам еще нужно вычесть значения разряда десятков тысяч, а дальше – значения разряда сотен тысяч. Но из значений этих разрядов (в нашем примере из чисел 0 и 5 ) нам вычитать нечего (так как вычитаемое число 2 330 не имеет цифр в этих разрядах). Как же быть? Очень просто – значения этих разрядов просто переписываются под горизонтальную линию:

На этом вычитание столбиком натуральных чисел 502 864 и 2 330 завершено. Разность равна 500 534 .

Осталось рассмотреть случаи, когда на некотором шаге вычитания столбиком значение разряда уменьшаемого числа меньше, чем значение соответствующего разряда вычитаемого. В этих случаях приходится «занимать» из старших разрядов. Давайте разберемся с этим на примерах.

Пример.

Вычтем столбиком из числа 534 число 71 .

Решение.

На первом шаге вычитаем из 4 число 1 , получаем 3 . Имеем:

На следующем шаге нам нужно вычитать значения разряда десятков, то есть, из числа 3 нужно вычесть число 7 . Так как 3<7 , то мы не можем выполнить вычитание этих натуральных чисел (вычитание натуральных чисел определяется лишь когда вычитаемое не больше, чем уменьшаемое). Что же делать? В этом случае мы берем 1 единицу из старшего разряда и «размениваем» ее. В нашем примере «размениваем» 1 сотню на 10 десятков. Чтобы наглядно отразить наши действия, поставим жирную точку над числом в разряде сотен, а над числом в разряде десятков запишем число 10 , используя другой цвет. Запись примет следующий вид:

Прибавляем полученные после «размена» 10 десятков к 3 имеющимся десяткам: 3+10=13 , и из этого числа вычитаем 7 . Имеем 13−7=6 . Это число 6 записываем под горизонтальной чертой на свое место:

Переходим к вычитанию значений разряда сотен. Здесь мы видим над числом 5 точку, которая означает, что из этого числа мы брали единицу «на размен». То есть, сейчас мы имеем не 5 , а 5−1=4 . От числа 4 больше ничего отнимать не нужно (так как исходное вычитаемое число 71 не содержит цифр в разряде сотен). Таким образом, под горизонтальную черту записываем число 4 :

Итак, разность 534−71 равна 463 .

Иногда при вычитании столбиком «разменивать» единицы из старших разрядов приходится несколько раз. В подтверждение этих слов разберем решение следующего примера.

Пример.

Отнимем от натурального числа 1 632 число 947 столбиком.

Решение.

На первом же шаге нам нужно вычесть из числа 2 число 7 . Так как 2<7 ,то сразу приходится «разменивать» 1 десяток на 10 единиц. После этого из суммы 10+2 вычитаем число 7 , получаем (10+2)−7=12−7=5 :

На следующем шаге нам нужно вычесть значения разряда десятков. Мы видим, что над числом 3 стоит точка, то есть, мы имеем не 3 , а 3−1=2 . И от этого числа 2 нам нужно отнять число 4 . Так как 2<4 , то опять приходится прибегать к «размену». Но сейчас уже размениваем 1 сотню на 10 десятков. При этом имеем (10+2)−4=12−4=8 :

Теперь вычитаем значения разряда сотен. Из числа 6 была занята единица на предыдущем шаге, поэтому имеем 6−1=5 . От этого числа нам нужно отнять число 9 . Так как 5<9 , то нам нужно «разменять» 1 тысячу на 10 сотен. Получаем (10+5)−9=15−9=6 :

Остался последний шаг. Из единицы в разряде тысяч мы занимали на предыдущем шаге, поэтому имеем 1−1=0 . От полученного числа нам ничего больше отнимать не нужно. Это число и записываем под горизонтальную черту:

Существует удобный метод нахождения разности двух натуральных чисел – вычитание в столбик, или вычитание столбиком. Этот способ берет свое название от метода записи уменьшаемого и разности друг под другом. Так можно провести и основные, и промежуточные вычисления в соответствии с нужными разрядами чисел.

Этим методом удобно пользоваться, поскольку это очень просто, быстро и наглядно. Все сложные на первый взгляд подсчеты можно свести к сложению и вычитанию простых чисел.

Ниже мы рассмотрим, как именно пользоваться этим методом. Наши рассуждения будут подкреплены примерами для большей наглядности.

Что нужно повторить перед изучением вычитания столбиком?

Метод основан на некоторых простых действиях, которые мы уже разбирали ранее. Необходимо повторить, как правильно вычитать с помощью таблицы сложения. Также желательно знать основное свойство вычитания равных натуральных чисел (в буквенном виде оно записывается как a − a = 0). Нам понадобятся следующие из него равенства a − 0 = a и 0 − 0 = 0 , где a – любое произвольно взятое натуральное число (если требуется, посмотрите основные свойства нахождения разности целых чисел).

Кроме того, важно знать, как определять разряд натуральных чисел.

Главное на первом этапе – правильно записать исходные данные. Для начала записываем первое число, из которого будем вычитать. Под ним располагаем вычитаемое. Цифры должны быть расположены строго одна под другой с учетом разряда: десятки под десятками, сотни под сотнями, единицы под единицами. Запись читается справа налево. Далее ставим минус с левой стороны от столбика и подводим черту под обоими числами. Под ней будет записываться конечный результат.

Пример 1

Покажем на примере, какая запись подсчета является правильной:

С помощью первой мы можем найти, сколько будет 56 − 9 , с помощью второй – 3 004 − 1 670 , третьей – 203 604 500 − 56 777 .

Как видно, с помощью этого метода можно производить вычисления разной сложности.

Далее рассмотрим сам процесс нахождения разности. Для этого выполняем поочередное вычитание значений разрядов: сначала вычитаем единицы из единиц, потом десятки из десятков, потом сотни из сотен и т.д. Значения записываем под чертой, отделяющей исходные данные от результата. В итоге у нас должно получиться число, которое и будет верным ответом задачи, т.е. разностью исходных чисел.

Как именно выполняются подсчеты, можно увидеть на этой схеме:

С общей картиной записи и подсчета мы разобрались. Однако в методе есть и некоторые моменты, нуждающиеся в уточнении. Для этого мы приведем конкретные примеры и поясним их. Начнем с простейших задач и будем постепенно наращивать сложность, пока наконец не разберем все нюансы.

Советуем внимательно прочитать все примеры, потому что каждый из них иллюстрирует отдельные непонятные моменты. Если вы дойдете до конца и запомните все объяснения, то подсчет разности натуральных чисел в дальнейшем не будет вызывать у вас ни малейших затруднений.

Пример 2

Условие: найдем разность 74 805 - 24 003 с помощью вычитания столбиком.

Решение:

Запишем эти числа одно под другим, правильно расположив разряды друг под другом, и подчеркнем их:

Вычитание начинается справа налево, то есть с единиц. Считаем: 5 - 3 = 2 (если нужно, повторите таблицы сложения натуральных чисел). Итог запишем под чертой там, где указаны единицы:

Вычитаем десятки. Оба значения в нашем столбике нулевые, а вычитание нуля из нуля всегда дает нуль (как вы помните, мы упоминали, что нам в дальнейшем потребуется это свойство вычитания). Результат записываем в нужное место:

Следующий шаг – нахождение значения разности тысяч: 4 − 4 = 0 . Получившийся нуль записываем на положенное ему место и получаем в итоге:

У нас получилось 50 802 , которое и будет верным ответом для указанного выше примера. На этом вычисления завершены.

Ответ: 50 802 .

Возьмем другой пример:

Пример 3

Условие : подсчитаем, сколько будет 5 777 - 5 751 с помощью метода нахождения разности столбиком.

Решение:

Шаги, которые нам нужно сделать, мы уже приводили выше. Выполняем их последовательно для новых чисел и получаем в итоге:

В начале результата стоит два нуля. Т.к. они стоят первыми, то можно смело их отбросить и получить в ответе 26 . Это число и будет правильным ответом нашего примера.

Ответ: 26 .

Если посмотреть на условия двух примеров, приведенных выше, легко заметить, что до сих пор мы брали только числа, равные по количеству знаков. Но метод столбика можно использовать и тогда, когда уменьшаемое включает в себя больше знаков, чем вычитаемое.

Пример 4

Условие: найдем разность 502 864 число 2 330 .

Решение

Запишем числа друг под другом, соблюдая нужную соотнесенность разрядов. Это будет выглядеть так:

Теперь поочередно вычисляем значения:

– единиц: 4 − 0 = 4 ;

– десятков: 6 − 3 = 3 ;

– сотен: 8 − 3 = 5 ;

– тысяч: 2 − 2 = 0 .

Запишем, что у нас получилось:

Вычитаемое имеет значения в месте десятков и сотен тысяч, а вот уменьшаемое нет. Что же делать? Вспомним, что пустота в математических примерах равнозначна нулю. Значит, нам нужно вычесть нули из исходных значений. Вычитание нуля из натурального числа всегда дает нуль, следовательно, все, что нам остается, – это переписать исходные значения разрядов в область ответа:

Наши подсчеты завершены. Мы получили итог: 502 864 - 2 330 = 500 534 .

Ответ: 500 534 .

В наших примерах значения разрядов вычитаемого всегда оказывались меньше, чем значения уменьшаемого, поэтому никаких трудностей при подсчете это не вызывало. Что делать, если из значения верхней строки нельзя вычесть значение нижней, не уйдя при этом в минус? Тогда нам нужно "взять взаймы" значения более старших разрядов. Возьмем конкретный пример.

Пример 5

Условие: найдите разность 534 - 71 .

Пишем уже привычный нам столбик и делаем первый шаг вычислений: 4 - 1 = 3 . Получаем:

Далее нам надо перейти к подсчету десятков. Для этого нам надо из 3 вычесть 7 . Это действие с натуральными числами выполнить нельзя, ведь оно имеет смысл только при таком уменьшаемом, которое больше вычитаемого. Поэтому в данном примере нам нужно "занять" единицу из старшего разряда и тем самым "разменять" его. То есть 100 мы как бы меняем на 10 десяток и берем одну из них. Чтобы не забыть об этом, отметим нужный разряд точкой, а в десятках запишем 10 другим цветом. У нас получилась запись следующего вида:

Получившийся результат пишем на нужном месте под чертой:

Нам осталось закончить подсчет, вычислив сотни. У нас стоит точка над числом 5: это значит, что мы отсюда брали десяток для предыдущего разряда. Тогда 5 − 1 = 4 . От четверки же ничего отнимать не нужно, поскольку вычитаемое в разряде сотен значений не имеет. Записываем 4 на место и получаем ответ:

Ответ : 463 .

Зачастую выполнять действие "размена" в рамках одного примера приходится несколько раз. Разберем такую задачу.

Пример 6

Условие: сколько будет 1 632 - 947 ?

Решение

В первом же этапе подсчета надо вычесть двойку из семерки, так что сразу "занимаем" десятку для размена на 10 единиц. Отмечаем это действие точкой и считаем 10 + 2 - 7 = 5 . Вот как выглядит наша запись с отметками:

Далее нам надо подсчитать десятки. Указанная точка означает, что для вычислений мы берем в этом разряде число на единицу меньше: 3 − 1 = 2 . Из двойки нам придется вычитать четверку, так что "размениваем" сотни. У нас получается (10 + 2) − 4 = 12 − 4 = 8 .

Движемся дальше к подсчету сотен. Из шестерки мы уже занимали единицу, так что 6 − 1 = 5 . Из пятерки вычитаем девятку, для чего берем имеющуюся у нас тысячу и "размениваем" ее на 10 сотен. Таким образом, (10 + 5) − 9 = 15 − 9 = 6 . Теперь наша запись с примечаниями выглядит так:

Нам осталось сделать подсчеты в тысячном разряде. Одну единицу отсюда мы уже занимали, так что 1 − 1 = 0 . Пишем результат под итоговую черту и смотрим, что получилось:

На этом вычисления закончены. Нуль в начале можно отбросить. Значит, 1 632 − 947 = 685 .

Ответ: 685 .

Возьмем еще более сложный пример.

Это нахождение одного из слагаемых по сумме и другому слагаемому.

Исходная сумма называется уменьшаемым , известное слагаемое - вычитаемым , а результат (т.е. искомое слагаемое) называется разностью .

Свойства вычитания чисел

1. a - (b + c) = (a - b) - c = (a - c) - b ;

2. (a + b) - c = (a - c) + b = a + (b - c) ;

3. a - (b - c) = (a - b) + c .


Для наглядного изображения арифметических операций (как сложения так и вычитания) можно использовать числовую прямую - это прямая, которая состоит из точки начала координат (эта точка соответствует нулю) и двух распространяющихся от нее лучей, один из которых соответствует положительным числам, а другой отрицательным.

Пример вычитания на числовой прямой

На этой числовой прямой можно увидеть, что числа находящиеся слева от 0 имеют отрицательное значение. Вычитая из отрицательного числа (в данном случае -1) единицу три раза, мы получим число -1.

Вычитая из положительного числа 4, положительное число 3 (или отрицательное число -1 три раза), получим единицу

Пример

4 - 3 = 1 ; 3 - 4 = - 1 ;
-1 -3 = - 4 ;

Вычитание чисел столбиком

Сначала вычитаются единицы, затем десятки, сотни и т.д. Разность каждого столбца записывается под ним. При необходимости из соседнего левого столбца (т.е. из старшего разряда) занимается 1 .

Рассмотрим несколько примеров вычитания в столбик, приведенных ниже.

Пример вычитания двузначных чисел столбиком

Пример вычитания трехзначных чисел столбиком

Принцип вычитания трехзначных чисел похож на метод вычитания двузначных чисел, в данном случае числа уже не десятки, а сотни.

Пример вычитания четырехзначных чисел столбиком

Принцип вычитания четырехзначных чисел похож на метод вычитания трехзначных чисел, в данном случае числа уже не сотни, а тысячи.

Включайся в дискуссию
Читайте также
День памяти участников первой мировой войны в доме рио День памяти воинов первой мировой войны
Алкены — Гипермаркет знаний
Урок