Подпишись и читай
самые интересные
статьи первым!

Защитная функция белков. Строение и функции белков

1. Как называется процесс нарушения природной структуры белка, при котором сохраняется его первичная структура? Действие каких факторов может приводить к нарушению структуры белковых молекул?

Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией. Денатурация белков может быть вызвана действием различных факторов, например, высокой температуры, концентрированных кислот и щелочей, тяжёлых металлов.

2. Чем фибриллярные белки отличаются от глобулярных? Приведите примеры фибриллярных и глобулярных белков.

Молекулы фибриллярных белков имеют вытянутую, нитевидную форму. Глобулярные белки характеризуются компактной округлой формой молекул. К фибриллярным белкам относятся, например, кератин, коллаген, миозин. Глобулярными белками являются глобулины и альбумины крови, фибриноген, гемоглобин и др.

3. Назовите основные биологические функции белков, приведите соответствующие примеры.

● Структурная функция. Белки входят в состав всех клеток и межклеточного вещества, являются компонентами различных структур живых организмов. Например, у животных белок коллаген входит в состав хрящей и сухожилий, эластин – в состав связок и стенок кровеносных сосудов, кератин является важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт.

● Ферментативная (каталитическая) функция. Белки-ферменты являются биологическими катализаторами, ускоряя протекание химических реакций в живых организмах. Например, пищеварительные ферменты амилаза и мальтаза расщепляют сложные углеводы до простых, пепсин – белки до пептидов, под действием липаз происходит расщепление жиров до глицерина и карбоновых кислот.

● Транспортная функция. Многие белки способны присоединять и переносить различные вещества. Например, гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют высшие карбоновые кислоты, а глобулины – ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из неё.

● Сократительная (двигательная) функция. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Например, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения, тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.

● Регуляторная функция. Некоторые белки и пептиды участвуют в регуляции различных физиологических процессов. Например, гормоны белково-пептидной природы инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) – процессы роста и физического развития.

● Сигнальная функция заключается в том, что некоторые белки, входящие в состав цитоплазматической мембраны клеток, в ответ на действие внешних факторов изменяют свою пространственную конфигурацию, тем самым обеспечивая приём сигналов из внешней среды и передачу информации в клетку. Например, белок опсин, входящий в состав пигмента родопсина, воспринимает свет и обеспечивает возникновение зрительного возбуждения рецепторов (палочек) сетчатки глаза.

● Защитная функция. Белки предохраняют организм от вторжения чужеродных объектов и от повреждений. Например, иммуноглобулины (антитела) участвуют в иммунном ответе, интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свёртывание крови, предотвращая кровопотерю.

● Токсическая функция. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов.

● Энергетическая функция. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии.

● Запасающая функция. Например, в семенах растений запасаются особые белки, которые используются при прорастании зародышем, а затем и проростком в качестве источника азота.

4. Что такое ферменты? Почему без их участия протекание большинства биохимических процессов в клетке было бы невозможным?

Ферменты – белки, которые выполняют функцию биологических катализаторов, т. е. ускоряют протекание химических реакций в живых организмах. Они катализируют реакции синтеза и расщепления различных веществ. Без участия ферментов эти процессы протекали бы слишком медленно или не протекали бы вовсе. Практически все процессы жизнедеятельности организмов обусловлены ферментативными реакциями.

5. В чем заключается специфичность ферментов? Какова её причина? Почему ферменты активно функционируют лишь в определённом диапазоне температуры, рН и других факторов?

Специфичность ферментов заключается в том, что каждый фермент ускоряет только одну реакцию либо действует только на определённый тип связи. Эта особенность объясняется соответствием пространственной конфигурации активного центра фермента тому или иному субстрату (субстратам).

Ферменты являются белками. Изменение рН, температуры и других факторов может вызвать денатурацию ферментов, в результате чего они теряют способность связываться со своими субстратами.

6. Почему белки, как правило, используются в качестве источников энергии лишь в крайних случаях, когда в клетках исчерпаны запасы углеводов и жиров?

Белки – основа жизни. Они выполняют чрезвычайно важные биологические функции, многие из которых (ферментативную, транспортную, двигательную и др.) не способны выполнять ни углеводы, ни жиры. Белки, использованные в качестве энергетического субстрата, дают столько же энергии, сколько и углеводы (1 г – 17,6 кДж) и в 2,2 раза меньше, чем жиры (1 г – около 39 кДж). Кроме того, при полном расщеплении белков (в отличие от углеводов и жиров) образуются не только СО 2 и Н 2 О, но также соединения азота и серы, причём некоторые из них токсичны для организма (например, NH 3). Поэтому энергетическую функцию у живых организмов выполняют прежде всего углеводы и жиры.

7*. У многих бактерий в процессах синтеза веществ, необходимых для нормального роста и размножения, участвует парааминобензойная кислота (ПАБК). В то же время в медицине для лечения ряда бактериальных инфекций используются сульфаниламиды - вещества, по структуре сходные с ПАБК. Как вы думаете, на чём основано лечебное действие сульфаниламидов?

С помощью фермента (дигидроптероатсинтетазы) бактерии осуществляют превращение ПАБК в продукт (дигидроптероевую кислоту), который далее используется для синтеза необходимых ростовых факторов. Из-за структурного сходства с ПАБК, сульфаниламиды также способны связываться с активным центром этого фермента, блокируя его работу (т.е. наблюдается конкурентное ингибирование). Это ведёт к нарушению синтеза ростовых факторов и нуклеиновых кислот у бактерий.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

Продолжение. См. № 11, 12, 13, 14/2005

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

III. Закрепление знаний

Заполнение таблицы «Уровни организации белков».

Таблица 5. Уровни организации белков

Уровень организации

Признаки

Связи, участвующие в образовании структуры

Первичная

Линейная последовательность аминокислот в полипептидной цепи

Ковалентные (пептидные) связи между остатком карбоксильной группы одной аминокислоты и остатком аминогруппы другой аминокислоты

Вторичная

Спираль, -структура или спирали с параметрами, отличными от -спиралей

Водородные связи между остатками карбоксильной группы одной аминокислоты и остатком аминогруппы другой, удаленной от первой на четыре аминокислотных остатка; в -структуре водородные связи между остатками карбоксильных и аминогрупп одной цепи и остатками одноименных групп другой цепи; в спиралях – аналогично -спиралям, но расстояние между витками иное

Третичная

Глобула, образующаяся в результате компактной укладки -спирали; -структуры, уложенные параллельными слоями; суперспираль – несколько спиралей, скрученных вместе

Ионные, дисульфидные мостики, гидрофобные, водородные

Четвертичная

Агрегат из нескольких глобул. Свойственна лишь белкам с особо сложной структурой

В основном силы межмолекулярного притяжения, в меньшей степени – водородные, ионные и ковалентные

IV. Домашнее задание

Изучить параграф учебника (белки, их содержание в живом веществе, строение и свойства аминокислот, образование пептидов, уровни организации белка, классификация белков).

Урок 10–11. Биологические функции белков

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение белков, схема классификации белков.

I. Проверка знаний

Работа по карточкам

Карточка 1. Юный биохимик, определяя содержание азота в чистом препарате белка, получил величину 39,9%. Как вы можете прокомментировать этот результат?

Карточка 2. Белок гемоглобин встречается у человека в двух вариантах:

    гемоглобин крови здорового человека (... вал-лей-лей-тре-про-вал-глу-лиз...);

    гемоглобин крови больного серповидноклеточной анемией (...вал-лей-лей-тре-про-глу-глу-лиз...). Чем вызвано заболевание?

Карточка 3. Как по молекулярной массе определить число возможных аминокислот в белке? От чего зависит возможная погрешность этой оценки?

Карточка 4. Сколько может существовать вариантов полипептидных цепей, включающих 20 аминокислот и состоящих из 50 аминокислотных остатков? Из 200 остатков?

Карточка 5. Заполните пропуски в тексте: «В результате взаимодействия различных... и образования... связей спирализованная молекула белка образует... структуру, которая, в свою очередь, зависит от... структуры белка, то есть от... аминокислот в молекуле полипептида. Субъединицы некоторых белков образуют... структуру. Примером такого белка является...».

Карточка 6. Ионы тяжелых металлов (ртути, свинца) и мышьяка, легко связываются с сульфидными группировками белков. Зная свойства сульфидов этих металлов, объясните, что произойдет с белком при соединении с этими металлами. Почему тяжелые металла являются ядами для организма?

1. Белки, их содержание в живом веществе, молекулярная масса.

2. Белки – непериодические полимеры. Строение и свойства аминокислот. Образование пептидов.

3. Первичная и вторичная структуры белковой молекулы.

4. Третичная и четвертичная структуры белка.

5. Классификация белков.

II. Изучение нового материала

1. Денатурация и другие свойства белков

Белки чрезвычайно разнообразны по своим физическим и химическим свойствам. Чем это обусловлено? (Беседа .) Приведем примеры разнообразия свойств белков.

1. Есть белки растворимые (например, фибриноген) и нерастворимые (например, фибрин) в воде.

2. Есть белки очень устойчивые (например, кератин) и неустойчивые (например, фермент каталаза с легко изменяющейся структурой).

3. У белков встречается разнообразная форма молекул – от нитей (миозин – белок мышечных волокон) до шариков (гемоглобин) и т.д.

Но всегда структура и свойства белка соответствуют выполняемой им функции.

В основе важнейшего свойства всех живых систем – раздражимости, лежит способность белков к обратимому изменению структуры в ответ на действие физических и химических факторов. Поскольку вторичная, третичная и четвертичная структуры белка создаются, в общем, более слабыми связями, чем первичная, то они оказываются менее стабильными. Например, при нагревании они легко разрушаются. При этом хотя у белка и сохраняется в целости первичная структура, он не может выполнять свои биологические функции, становится неактивным. Процесс разрушения природной конформации белка, сопровождающийся потерей активности, называется денатурацией. Разрыв части слабых связей, изменения конформации и свойств происходят и под действием физиологических факторов (например, под действием гормонов). Таким образом регулируются свойства белков – ферментов, рецепторов, транспортеров.

Эти изменения структуры обычно легко обратимы. Обратный денатурации процесс называется ренатурацией . Это свойство белков широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например антибиотиков, вакцин, сывороток, ферментов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Если восстановление пространственной конфигурации белка невозможно, то денатурация считается необратимой. Обычно это происходит при разрыве большого количества связей, например при варке яиц.

Таким образом, белки имеют сложное строение, разнообразные формы и состав. Это делает их свойства многообразными. А это, в свою очередь, позволяет белкам выполнять многочисленные биологические функции.

2. Биологические функции белков

Белки выполняют целый ряд важнейших функций в клетке и организме, основными из которых являются следующие.

1. Структурная (строительная). Белки входят в состав всех клеточных мембран и органоидов клетки, а также внеклеточных структур. В качестве примера белка, выполняющего структурную функцию, можно привести кератин . Из этого белка состоят волосы, шерсть, рога, копыта, верхний отмерший слой кожи. В более глубоких слоях кожи расположены прокладки из белков коллагена и эластина . Именно эти белки обеспечивают прочность и упругость кожи. Они же содержатся в связках, соединяющих мышцы с суставами и суставы между собой.

2. Ферментативная. Белки являются биологическими катализаторами. Например, пепсин, трипсин и др. (подробно свойства белков-ферментов мы рассмотрим на следующих уроках).

3. Двигательная. Особые сократительные белки участвуют во всех видах движения клетки и организма: образовании псевдоподий, мерцании ресничек и биении жгутиков у простейших, сокращении мышц у многоклеточных животных, движении листьев у растений и др. Так, сокращение мышц обеспечивают мышечные белки актин и миозин , они же делают возможным ползание амебы.

4. Транспортная. В крови, в наружных клеточных мембранах, в цитоплазме и ядрах клеток есть различные транспортные белки. В крови имеются белки-транспортеры, которые узнают и связывают определенные гормоны и несут их к клеткам-мишеням. В наружных клеточных мембранах имеются белки-транспортеры, которые обеспечивают активный и строго избирательный транспорт внутрь и наружу клетки сахаров, аминокислот, различных ионов. Известны и другие транспортные белки, например гемоглобин и гемоцианин , переносящие кислород, и миоглобин , удерживающий кислород в мышцах.

5. Защитная. В ответ на проникновение в организм чужеродных белков или микроорганизмов, обладающих антигенными свойствами, лимфоциты крови образуют особые белки – антитела, способные связывать и обезвреживать их. В слюне и слезах содержится белок лизоцим – фермент, разрушающий клеточные стенки бактерий. Если на слизистую глаз или полости рта попадает микроб, его оболочка разрушается под действием лизоцима, и дальше с ним легко справляются защитные клетки. Фибрин и тромбин способствуют остановке кровотечений.

6. Энергетическая (питательная). Белки можно расщепить, окислить и получить энергию, необходимую для жизни. Правда, это не очень выгодно: энергетическая ценность белков по сравнению с жирами невысока и составляет 17,6 кДж (4,1 ккал) энергии на 1 г белка. Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы жиров и углеводов.

7. Регуляторная. Многие (хотя далеко не все) гормоны являются белками – например все гормоны гипофиза, гипоталамуса, поджелудочной железы (инсулин , глюкагон ) и др. Гормоны действуют на клетку, связываясь со специфическими рецепторами. Каждый рецептор узнает только один гормон. Рецепторы всех гормонов являются белками. Другим примером могут служить белки, которые регулируют образование и рост отдельных органов и тканей в процессе развития организма из зиготы. Фитохром растений является сложным светочувствительным белком, регулирующим фотопериодическую реакцию у растений.

8. Сигнальная (рецепторная). В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

9. Запасающая. Благодаря белкам в организме могут откладываться в запас некоторые вещества. Яичный альбумин служит водозапасающим белком в яичном «белке», казеин молока является источником энергии, а белок ферритин удерживает железо в яичном желтке, селезенке и печени.

10. Токсическая. Некоторые белки являются токсинами: яд кобры содержит нейротоксин .

III. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

IV. Домашнее задание

Изучить параграф учебника (свойства белков и их биологические функции).

Урок 12–13. Ферменты, их химический состав и структура. Биологическая роль ферментов

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение и механизм действия ферментов, схема классификации ферментов, оборудование для проведения лабораторной работы.

I. Проверка знаний

Работа по карточкам

Карточка 1. Установлено, что при достаточной калорийности пищи, но при отсутствии в ней белка у животных наблюдаются патологические явления: останавливается рост, изменяется состав крови и т.д. С чем это связано?

Карточка 2. Почему белки называют «носителями и организаторами жизни»?

Карточка 3. Какие особенности строения белковой молекулы обеспечивают ей выполнение многих функций, например транспортной, защитной, энергетической?

Карточка 4. Заполните пропуски в тексте: «Защитные белки называются... . Они связываются с..., попадающими в организм и называемыми... . Среди тысяч разнообразных белков... узнают только один... и с ним реагируют. Такой механизм сопротивления возбудителям заболеваний называется...».

Карточка 5. Какие сходные функции в живых организмах выполняют белки, углеводы и липиды?

Устная проверка знаний по вопросам

1. Денатурация и другие свойства белков. Связь строения, свойств и функций белков.

2. Биологические функции белков (трое учащихся ).

II. Изучение нового материала

1. Ферменты и их значение в процессах жизнедеятельности

Из курса химии вам известно, что такое катализатор. Это вещество, которое ускоряет реакцию, оставаясь в конце реакции неизменным (не расходуясь). Биологические катализаторы называются ферментами (от лат. fermentum – брожение, закваска), или энзимами .

Почти все ферменты – это белки (но не все белки – ферменты!). В последние годы стало известно, что и некоторые молекулы РНК имеют свойства ферментов.

Впервые высокоочищенный кристаллический фермент был выделен в 1926 г. американским биохимиком Дж.Самнером. Этим ферментом была уреаза , которая катализирует расщепление мочевины. К настоящему времени известно более 2 тыс. ферментов, и их количество продолжает расти. Многие из них выделены из живых клеток и получены в чистом виде.

В клетке постоянно идут тысячи реакций. Если смешать в пробирке органические и неорганические вещества точно в тех же соотношениях, что и в живой клетке, но без ферментов, то почти никаких реакций с заметной скоростью идти не будет. Именно благодаря ферментам реализуется генетическая информация и осуществляется весь обмен веществ.

Для названия большинства ферментов характерен суффикс -аза, который чаще всего прибавляется к названию субстрата – вещества, с которым взаимодействует фермент.

2. Строение ферментов

По сравнению с молекулярной массой субстрата ферменты имеют гораздо большую массу. Такое несоответствие наводит на мысль, что не вся молекула фермента участвует в катализе. Чтобы разобраться в этом вопросе, необходимо познакомиться со строением ферментов.

По строению ферменты могут быть простыми и сложными белками. Во втором случае в составе фермента кроме белковой части (апофермент ) имеется добавочная группа небелковой природы – активатор (кофактор , или кофермент ), вследствие чего образуется активный голофермент . Активаторами ферментов выступают:

1) неорганические ионы (например, для активации фермента амилазы, находящегося в слюне, необходимы ионы хлора (Сl–);

2) простетические группы (ФАД, биотин), прочно связанные с субстратом;

3) коферменты (НАД, НАДФ, кофермент А), непрочно связанные с субстратом.

Белковая часть и небелковый компонент в отдельности лишены ферментативной активности, но, соединившись вместе, приобретают характерные свойства фермента.

В белковой части ферментов содержатся уникальные по своей структуре активные центры, представляющие собой сочетание определенных аминокислотных остатков, строго ориентированных по отношению друг к другу (в настоящее время структура активных центров ряда ферментов расшифрована). Активный центр взаимодействует с молекулой субстрата с образованием «фермент-субстратного комплекса». Затем «фермент-субстратный комплекс» распадается на фермент и продукт или продукты реакции.

Согласно гипотезе, выдвинутой в 1890 г. Э.Фишером, субстрат подходит к ферменту, как ключ к замку , т.е. пространственные конфигурации активного центра фермента и субстрата точно соответствуют (комплементарны ) друг другу. Субстрат сравнивается с «ключом», который подходит к «замку» – ферменту. Так, активный центр лизоцима (фермента слюны) имеет вид щели и по форме точно соответствует фрагменту молекулы сложного углевода бактериальной палочки, которая расщепляется под действием этого фермента.

В 1959 г. Д. Кошланд выдвинул гипотезу, по которой пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу назвали гипотезой «руки и перчатки» (гипотеза индуцированного взаимодействия). Этот процесс «динамического узнавания» – на сегодня наиболее распространенная гипотеза.

3. Отличия ферментов от небиологических катализаторов

Ферменты во многом отличаются от небиологических катализаторов.

1. Ферменты значительно эффективнее (в 10 4 –10 9 раз). Так, единственная молекула фермента каталазы может расщепить за одну секунду 10 тыс. молекул токсичной для клетки перекиси водорода:

2Н 2 О 2 ––> 2H 2 O + O 2 ­,

которая возникает при окислении в организме различных соединений. Или еще один пример, подтверждающий высокую эффективность действия ферментов: при комнатной температуре одна молекула уреазы способна за за одну секунду расщепить до 30 тыс. молекул мочевины:

H 2 N–CO–NH 2 + Н 2 О ––> СО 2 ­ + 2NН 3 ­.

Не будь катализатора, на это потребовалось бы около 3 млн лет.

2. Высокая специфичность действия ферментов. Большинство ферментов действуют лишь на один или очень небольшое число «своих» природных соединений (субстратов). Специфичность ферментов отражает формула «один фермент – один субстрат» . Благодаря этому в живых организмах множество реакций катализируется независимо.

3. Ферменты доступны тонкой и точной регуляции. Активность фермента может увеличиваться или уменьшаться при незначительном изменении условий, в которых он «работает».

4. Небиологические катализаторы в большинстве случаев хорошо работают лишь при высокой температуре. Ферменты же, присутствуя в клетках в малых количествах, работают при обычной температуре и давлении (хотя рамки действия ферментов ограничены, так как высокая температура вызывает денатурацию). Поскольку большинство ферментов являются белками, их активность наиболее высока при физиологически нормальных условиях: t=35–45 °C; слабощелочная среда (хотя для каждого фермента существует свое оптимальное значение рН).

5. Ферменты образуют комплексы – так называемые биологические конвейеры. Процесс расщепления или синтеза любого вещества в клетке, как правило, разделен на ряд химических операций. Каждую операцию выполняет отдельный фермент. Группа таких ферментов составляет своего рода биохимический конвейер.

6. Ферменты способны регулироваться, т.е. «включаться» и «выключаться» (правда, это относится не ко всем ферментам, например, не регулируется амилаза слюны и ряд других пищеварительных ферментов). В большинстве молекул апоферментов есть участки, которые узнают еще и конечный продукт, «сходящий» с полиферментного конвейера. Если такого продукта слишком много, то активность самого начального фермента тормозится им, и наоборот, если продукта мало, то фермент активизируется. Так регулируется множество биохимических процессов.

Таким образом, ферменты обладают целым рядом преимуществ по сравнению с небиологическими катализаторами.

4. Механизм действия ферментов

Ферменты действуют в живых организмах по тем же законам, что и любые катализаторы. Ферментативный катализ основан на снижении энергетического барьера (так называемой энергии активации) за счет образования промежуточных комплексов фермента с субстратом. В отсутствии, например, амилазы реакция между крахмалом и водой не идет потому, что молекулы не обладают достаточной для этой цели энергией. Фермент ускоряет химический процесс, т.к. в его присутствии требуется меньше энергии для «запуска» данной реакции. Рассмотрим механизм действия ферментов подробнее.

1. Катализируя реакцию, фермент тесно сближает молекулы «своих» субстратов, так что те части молекул, которым предстоит прореагировать, оказываются рядом.

2. Субстрат, присоединившись к ферменту, несколько изменяется. Фермент может притягивать электроны, вследствие чего в некоторых связях молекулы субстрата будет возникать напряжение. Это в свою очередь повышает реакционную способность молекулы, так как связи между атомами ослабевают, и они легче высвобождаются (предполагается, что именно так фермент и ускоряет реакцию).

3. Фермент «отрывает» атом (или атомы) от каждого из субстратов, после чего субстраты соединяются.

4. Отделившиеся атомы соединяются друг с другом и покидают фермент. Теперь фермент способен присоединить новые молекулы субстратов.

Чаще всего ферменты приурочены к определенным клеточным структурам. Они сохраняют свои свойства и вне организма. Ферменты успешно используют в хлебопекарной, пивоваренной, винодельческой, кожевенной, химической промышленности.

5. Классификация ферментов

Работа учащихся с текстом учебника и заполнение таблицы «Важнейшие группы ферментов» с последующей проверкой.

Таблица 6. Важнейшие группы ферментов

Номер и название классов

Катализируемые реакции

1. Оксидоредуктазы

2. Трансферазы

3. Гидролазы

4. Лиазы

5. Изомеразы

6. Лигазы (синтетазы)

Окислительно-восстановительные реакции: перенос атомов водорода или кислорода или электронов от одного вещества к другому

Перенос функциональных групп от одного вещества к другому

Гидролиз: реакции расщепления сложных органических веществ на более простые путем присоединения воды

Негидролитическое присоединение или отщепление функциональных групп

Изомеризация, т.е. превращение изомеров друг в друга

Реакции синтеза с использованием энергии АТФ

Каталаза разлагает пероксид водорода на воду и молекулярный кислород; цитохромы переносят и присоединяют электроны к атомам кислорода в процессе дыхания и к протонам в ходе реакций световой фазы фотосинтеза

Под действием фосфотрансфераз происходит перенос остатков фосфорной кислоты от АТФ на глюкозу или фруктозу

Амилаза гидролизует крахмал до мальтозы; трипсин гидролизует белки и пептиды до аминокислот

Отщепление карбоксильных групп декарбоксилазами

Взаимопревращения глюкозы и фруктозы в растениях под действием глюкозофосфатизомеразы

Карбоксилазы катализируют присоединение углекислого газа к органическим кислотам

III. Закрепление знаний

Лабораторнаяработы № 1. «Изучение каталитической активности фермента каталазы в живых тканях»

Оборудование:штативы, пробирки, склянки со свежим 3%-ным раствором пероксида водорода, ткани растений и животных, баночки с водой и элодеей, микроскопы, предметные и покровные стекла, пинцеты и пипетки.

Ход работы

1. Прилейте по 2 мл пероксида водорода в пробирки с сырым мясом, вареным мясом, сырым и вареным картофелем. Объясните наблюдаемые вами явления при действии пероксида на живые и мертвые ткани.

2. На предметное стекло в каплю воды поместите лист элодеи и рассмотрите под микроскопом при малом увеличении место отрыва листа от стебля.

3. Нанесите на лист элодеи две капли пероксида водорода, накройте покровным стеклом и под микроскопом рассмотрите место отрыва листа от стебля. Объясните бурное выделение пузырьков газа из поврежденных клеток листа элодеи.

4. Выводы.

    Как проявляется активность фермента в живых и мертвых тканях? Почему?

    Различается ли активность фермента в живых тканях растений и животных?

    Как бы вы предложили измерить скорость разложения пероксида водорода?

    Как вы считаете, все ли живые организмы содержат фермент каталазу, обеспечивающий разложение перекиси водорода? Ответ обоснуйте.

IV. Домашнее задание

Изучить параграф учебника (ферменты, их значение, строение, механизм действия и классификацию).

Урок 14–15. Нуклеиновые кислоты – непериодические полимеры. Строение нуклеотида. Образование полинуклеотидов. Образование двухцепочечной молекулы ДНК. Принцип комплементарности

Оборудование: таблицы по общей биологии, схемы и рисунки, иллюстрирующие строение и механизм действия ферментов, схема классификации ферментов, схема строения нуклеотида, модель строения ДНК.

I. Проверка знаний

Работа по карточкам

Карточка 1. Известно, что скорость химических реакций при снижении температуры на 10 °С уменьшается всего в 2–3 раза. Биохимики для большей стабильности анализируемых образцов хранят их при пониженной температуре. Тем не менее если у замерзающего человека температура тела падает хотя бы на 10 °С, то это приводит к серьезным, часто необратимым последствиям. Нет ли здесь противоречия?

Карточка 2. Из записных книжек Кифы Мокиевича: «Протеаза – фермент, расщепляющий пептидные связи в белках. Амилаза – фермент, расщепляющий гликозидные связи в углеводах. Известно, что все ферменты обладают крайне высокой специфичностью и подходят к субстрату, как ключ к замку. Раз субстраты у ферментов совпадают, то одинаковы и сами ферменты. Отсюда следует, что биохимикам достаточно изучить одну амилазу (скажем, из слюны человека) и одну протеазу (скажем, из стирального порошка) – ведь они идентичны!» Как бы вы могли возразить Кифе Мокиевичу?

Карточка 3. Из тканей крысы был выделен некоторый фермент. Его раствор при +4 °С сохраняет каталитическую активность на протяжении нескольких недель. После же того, как его поместили на 2 ч в термостат при +40 °С, он утратил 50% активности. Верно ли, что еще через 2 ч он стал бы полностью неактивным? Но в теле крысы отнюдь не +4 °С, а как раз +40 °С. Так нужен ли ей такой нестойкий фермент?

Карточка 4. Попробуйте составить список ферментов, необходимых для существования любой клетки. Если название того или иного фермента вам неизвестно, достаточно указать катализируемую им реакцию.

Карточка 5. Экспериментатор, изучая скорость расщепления белка протеазой, обнаружил, что она с течением времени сначала выросла в несколько раз, а потом упала – до полной утраты активности фермента. Как можно объяснить эту закономерность? Какие протеазы, по вашему мнению, обладают таким свойством?

Карточка 6. Почему активность фермента может зависеть от рН?

Карточка 7. Какими способами клетка может управлять скоростями протекающих в ней химических процессов? А какими способами может регулировать скорости химических процессов организм человека?

Карточка 8. Как вы понимаете «каталитический (ферментативный) конвейер в клетке»? В чем заключается преимущество конвейерного расположения молекул ферментов на мембране по сравнению со свободным, беспорядочным их положением в цитоплазме?

Устная проверка знаний по вопросам

1. Ферменты и их значение в процессах жизнедеятельности.

2. Строение ферментов и причина их высокой специфичности.

3. Отличия ферментов от небиологических катализаторов.

4. Механизм действия ферментов.

5. Классификация ферментов.

II. Изучение нового материала

1. Нуклеиновые кислоты, их содержание в клетке, размеры молекул и молекулярная масса

Нуклеиновые кислоты – природные высокомолекулярные органические соединения, полинуклеотиды, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Эти органические соединения были открыты в 1869 г. швейцарским врачом И.Ф. Мишером в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Нуклеиновые кислоты являются составной частью клеточных ядер, поэтому они и получили такое название (от лат. nucleus – ядро). Помимо ядра нуклеиновые кислоты встречаются также в цитоплазме, центриолях, митохондриях, хлоропластах.

В природе существуют нуклеиновые кислоты двух типов: дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Они различаются по составу, строению и функциям. ДНК имеет двухцепочечную молекулу, а РНК – одноцепочечную. Содержание нуклеиновых кислот в живом веществе – от 1 до 2%.

Нуклеиновые кислоты – биополимеры, достигающие огромных размеров. Длина их молекул равна сотням тысяч нанометров (1 нм = 10 –9 м), это в тысячи раз больше длины белковых молекул. Особенно велика молекула ДНК. Молекулярная масса нуклеиновых кислот достигает десятков миллионов и миллиардов (10 5 –10 9). Например, масса ДНК кишечной палочки равна 2,5x10 9 , а в ядре половой клетки человека (гаплоидный набор хромосом) длина молекул ДНК составляет 102 см.

2. НК – непериодические полимеры. Типы нуклеотидов и их строение

Нуклеиновые кислоты – непериодические биополимеры, полимерные цепи которых образованы мономерами, называемыми нуклеотидами. В молекулах ДНК и РНК содержится по четыре типа нуклеотидов. Нуклеотиды ДНК называют дезоксирибонуклеотидами, а РНК – рибонуклеотидами. Нуклеотидный состав ДНК и РНК отражают данные таблицы.

Таблица 7. Состав нуклеотидов ДНК и РНК

Рассмотрим строение нуклеотида. Нуклеотиды – сложные органические соединения, включающие в себя три компонента . Схема строения нуклеотида ДНК приведена на рисунке.

1. Азотистые основания имеют циклическую структуру, в состав которой наряду с атомами углерода входят атомы других элементов, в частности азота. За присутствие в этих соединениях атомов азота они и получили название «азотистые», а поскольку обладают щелочными свойствами – «основания». Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания являются производными пиримидина, имеющего в составе своей молекулы одно кольцо. В составе дезоксирибонуклеотидов обнаруживаются пиримидиновые основания тимин и цитозин , а в составе рибонуклеотидов – цитозин и урацил . Урацил отличается от тимина отсутствием метильной группы (–СН 3).

Пуриновые основания являются производными пурина, имеющего два кольца. К пуриновым основаниям относятся аденин и гуанин . Они входят в состав нуклеотидов как ДНК, так и РНК.

2. Углевод – пентоза (C 5 ). Этот компонент также принимает участие в образовании нуклеотидов. В составе нуклеотидов ДНК содержится пентоза – дезоксирибоза, а в составе нуклеотидов РНК – рибоза. Углеводный состав нуклеотидов отражен, как мы видим, в названиях нуклеиновых кислот: дезоксирибонуклеиновая и рибонуклеиновая. Соединения пентозы с азотистым основанием получили название «нуклеозиды».

3. Остаток фосфорной кислоты. Фосфат придает нуклеиновым кислотам кислые свойства.

Итак, нуклеотид состоит из азотистого основания, пентозы и фосфата. В составе нуклеотидов с одной стороны к углеводу присоединено азотистое основание, а с другой – остаток фосфорной кислоты.

Продолжение следует

Белки и их функции.

Изучим основные вещества составляющие наши с вами организмы. Одни из них самых важных это белки.

Белки (протеины, полипептиды) – углеродные вещества, состоящие из соединенных в цепочку аминокислот . Являются обязательной составной частью всех клеток.

Аминокислоты - углеродные соединения, в молекулах которых одновременно содержатся карбоксильные (-COOH) и аминные (NH2) группы.

Соединение, состоящее из большого числа аминокислот, называется - полипептидом . Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот.

Свойства белков, определяет их аминокислотный состав, в строго зафиксированной последовательности, а аминокислотный состав в свою очередь определяется генетическим кодом. При создании белков используется 20 стандартных аминокислот.

Структура белков.

Выделяют несколько уровней:

- Первичная структура - определяется порядком чередования аминокислот в полипептидной цепи.

Двадцать разных аминокислот можно уподобить 20 буквам химического алфавита, из которых составлены «слова» длиной в 300-500 букв. С помощью 20 букв можно написать безграничное множество таких длинных слов. Если считать, что замена или перестановка хотя бы одной буквы в слове придает ему новый смысл, то число комбинаций в слове длиной в 500 букв составит 20500.

Известно, что замена даже одного аминокислотного звена другим в белковой молекуле изменяет ее свойства. В каждой клетке содержится несколько тысяч разных видов белковых молекул, и для каждого из них характерна строго определенная последовательность аминокислот. Именно порядок чередования аминокислот в данной белковой молекуле определяет ее особые физико-химические и биологические свойства. Исследователи умеют расшифровывать последовательность аминокислот в длинных белковых молекулах и синтезировать такие молекулы.

- Вторичная структура – белковые молекулы в виде спирали, с одинаковыми расстояниями между витками.

Между группами N-Н и С=О, расположенными на соседних витках, возникают водородные связи. Они повторенные многократно, скрепляют регулярные витки спирали.

- Третичная структура – образование спиралиевого клубка.

Этот клубок образован закономерным переплетением участков белковой цепи. Положительно и отрицательно заряженные группы аминокислот притягиваются и сближают даже далеко отстоящие друг от друга участки белковой цепи. Сближаются и иные участки белковой молекулы, несущие, например, «водоотталкивающие» (гидрофобные) радикалы.

Для каждого вида белка характерна своя форма клубка с изгибами и петлями. Третичная структура зависит от первичной структуры, т. е. от порядка расположения аминокислот в цепи.
- Четвертичная структура – сборный белок, состоящий из нескольких цепей, отличающихся по первичной структуре.
Объединяясь вместе, они создают сложный белок, обладающий не только третичной, но и четвертичной структурой.

Денатурация белка.

Под действием ионизирующей радиации, высокой температуры, сильного взбалтывания, экстремальных значений рН (концентрация йонов водорода), а также ряда органических растворителей, таких, как спирт или ацетон, белки изменяют свое естественное состояние. Нарушение природной структуры белка называют денатурацией. Подавляющее большинство белков утрачивает при этом биологическую активность, хотя первичная структура их после денатурации не меняется. Дело в том, что в процессе денатурации нарушаются вторичная, третичная и четвертичная структуры, обусловленные слабыми взаимодействиями между аминокислотными остатками, а ковалентные пептидные связи (с объединением электронов) не разрываются. Необратимую денатурацию можно наблюдать при нагревании жидкого и прозрачного белка куриного яйца: он становится плотным и непрозрачным. Денатурация может быть и обратимой. После устранения денатурирующего фактора многие белки способны вернуть естественную форму, т.е. ренатурировать.

Способность белков к обратимому изменению пространственной структуры в ответ на действие физических или химических факторов лежит в основе раздражимости - важнейшего свойства всех живых существ.

Функции белков.

Каталитическая.

В каждой живой клетке происходят непрерывно сотни биохимических реакций. В ходе этих реакций идут расщепление и окисление поступающих извне питательных веществ. Полученную вследствие окисления энергию питательных веществ и продукты их расщепления клетка использует для синтеза необходимых ей разнообразных органических соединений. Быстрое протекание таких реакций обеспечивают биологические катализаторы, или ускорители реакций, - ферменты. Известно более тысячи разных ферментов. Все они белки.
Белки-ферменты – ускоряют протекающие реакции в организме. Ферменты учавствуют в расщеплении сложных молекул (катаболизм) и их синтезе (анаболизм) а также создания и ремонте ДНК и матричного синтеза РНК.

Структурная.

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная.

  1. Физическая защита. (пример: коллаген - белок, образующий основу межклеточного вещества соединительных тканей)
  1. Химическая защита. Связывание токсинов белковыми молекулами обеспечивает их детоксикацию. (пример: ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма)
  1. Иммунная защита. На попадание бактерий или вирусов в кровь животных и человека организм реагирует выработкой специальных защитных белков - антител. Эти белки связываются с чужеродными для организма белками возбудителей заболеваний, чем подавляется их жизнедеятельность. На каждый чужеродный белок организм вырабатывает специальные «антибелки» - антитела.
Регуляторная.

Гормоны переносятся кровью. Большинство гормонов животных - это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин , который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и программируемую клеточную смерть, обеспечивают согласованность действий иммунной, эндокринной и нервной систем.

Транспортная.

Только белки осуществляют перенос веществ в крови, например, липопротеины (перенос жира), гемоглобин (транспорт кислорода), трансферрин (транспорт железа) или через мембраны- Na+,К+-АТФаза (противоположный трансмембранный перенос ионов натрия и калия), Са2+-АТФаза (выкачивание ионов кальция из клетки).

Рецепторная.

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы.

Строительная.

Животные в процессе эволюции утратили способность осуществлять синтез десяти особенно сложных аминокислот, называемых незаменимыми. Они получают их в готовом виде с растительной и животной пищей. Такие аминокислоты содержатся в белках молочных продуктов (молоко, сыр, творог), в яйцах, рыбе, мясе, а также в сое, бобах и некоторых других растениях. В пищеварительном тракте белки расщепляются до аминокислот, которые всасываются в кровь и попадают в клетки. В клетках из готовых аминокислот строятся собственные белки, характерные для данного организма. Белки являются обязательным компонентом всех клеточных структур и в этом состоит их важная строительная роль.

Энергетическая.

Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма. При длительном голодании используются белки мышц, лимфоидных органов, эпителиальных тканей и печени.

Моторная (двигательная).

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе движение миозиновых мостиков в мышце, перемещение клеток внутри организма (например, амебоидное движение лейкоцитов).

На самом деле это очень краткое описание функций белков, которое только наглядно может продемонстрировать их функции и значимость в организме.

Немного видео для понимания о белках:

Белки являются основой всех живых организмов. Именно эти вещества выступают компонентом клеточных мембран, органелл, хрящей, сухожилий и роговых Однако защитная функция белков - одна из самых важных.

Белки: особенности строения

Наряду с липидами, углеводами и нуклеиновыми кислотами белки являются органическими веществами, составляющими основу живых существ. Все они - природные биополимеры. Эти вещества состоят из многократно повторяющихся структурных единиц. Они называются мономеры. Для белков такими структурными единицами являются аминокислоты. Соединяясь в цепочки, они образуют крупную макромолекулу.

Уровни пространственной организации белка

Цепочка, состоящая из двадцати аминокислот, может образовывать различные структуры. Это уровни пространственной организации или конформации представлена цепью из аминокислот. Когда она закручивается в спираль, возникает вторичная. Третичная структура возникает при закручивании предыдущей конформации в клубок или глобулу. А вот следующая структура самая сложная - четвертичная. Она состоит из нескольких глобул.

Свойства белков

Если четвертичная структура разрушается до первичной, а именно до цепи аминокислот, то происходит процесс, который называется денатурацией. Он обратим. Цепочка аминокислот способна снова образовать более сложные структуры. А вот когда происходит деструкция, т.е. разрушение первичной восстановить уже невозможно. Такой процесс является необратимым. Деструкцию осуществлял каждый из нас, когда термически обрабатывал продукты, состоящие из белка - куриные яйца, рыбу, мясо.

Функции белков: таблица

Белковые молекулы очень многобразны. Это обусловливает широкий спектр их возможностей, которые обусловлены Функции белков (таблица содержит необходимую информацию) являются необходимым условием существования живых организмов.

Функция белка Значение и суть процесса Название белков, осуществляющих функцию

Строительная

(структурная)

Белок является строительным материалом для всех структур организма: от мембран клетки до мышц и связок. Коллаген, фиброин
Энергетическая При расщеплении белков выделяется энергия, необходимая для осуществления процессов жизнедеятельности организма (1 г белка - 17, 2 кДж энергии). Проламин
Сигнальная Белковые соединения клеточных мембран способны распознавать специфические вещества из окружающей среды. Гликопротеиды
Сократительная Обеспечение двигательной активности. Актин, миозин
Резервная Запас питательных веществ. Эндосперм семян
Транспортная Обеспечение газообмена. Гемоглобин
Регуляторная Регуляция химических и физиологических процессов в организме. Белки гормонов
Каталитическая Ускорение протекания химических реакций. Ферменты (энзимы)

Защитная функция белков в организме

Как видите, функции белков очень разнообразны и важны по своему значению. Но мы не упомянули еще об одной из них. Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами.

Процесс формирования иммунитета

С каждым вздохом в наш организм проникают болезнетворные бактерии и вирусы. Они попадают в кровь, где начинают активно размножаться. Однако на их пути встает значительная преграда. Это белки плазмы крови - иммуноглобулины или антитела. Они являются специализированными и характеризуются способностью распознавать и обезвреживать чужеродные для организма вещества и структуры. Они называются антигенами. Так проявляется защитная функция белков. Примеры ее можно продолжить информацией об интерфероне. Этот белок также является специализированным и распознает вирусы. Это вещество даже является основой многих иммуностимулирующих лекарственных препаратов.

Благодаря наличию защитных белков организм способен противостоять болезнетворным частицам, т.е. у него формируется иммунитет. Он может быть врожденным и приобретенным. Первым все организмы наделены еще с момента появления на свет, благодаря чему и возможна жизнь. А приобретенный появляется после перенесения различных инфекционных заболеваний.

Механическая защита

Белки выполняют защитную функцию, непосредственно предохраняя клетки и весь организм от механических воздействий. К примеру, ракообразных играет роль панциря, надежно защищая все содержимое. Кости, мышцы и хрящи образуют основу организма, и не только предотвращают повреждение мягких тканей и органов, но и обеспечивают его передвижение в пространстве.

Образование тромбов

Процесс свертывания крови - это также защитная функция белков. Он возможен благодаря наличию специализированных клеток - тромбоцитов. При повреждении кровеносных сосудов они разрушаются. В результате плазмы фибриноген превращается в его нерастворимую форму - фибрин. Это сложный ферментативный процесс, в результате которого нити фибрина очень часто переплетаются и образуют густую сеть, которая препятствует вытеканию крови. Другими словами, образуется сгусток крови или тромб. Это является защитной реакцией организма. При нормальной жизнедеятельности этот процесс длится максимум до десяти минут. Но при - гемофилии, которой страдают в основном мужчины, человек может погибнуть даже при незначительном ранении.

Однако если тромбы образуются внутри кровеносного сосуда, это может быть очень опасно. В некоторых случаях это даже приводит к нарушению его целостности и внутреннему кровоизлиянию. В этом случае рекомендованы препараты, наоборот, разжижающие кровь.

Химическая защита

Защитная функция белков проявляется и в химической борьбе с болезнетворными веществами. И начинается она уже в ротовой полости. Попадая в нее, пища вызывает рефлекторное выделение слюны. Основу этого вещества составляет вода, ферменты, которые расщепляют полисахариды и лизоцим. Именно последнее вещество обезвреживает вредоносные молекулы, защищая организм от их дальнейшего воздействия. Содержится он и в слизистых оболочках желудочно-кишечного тракта, и в слезной жидкости, которая омывает роговицу глаза. В большом количестве лизоцим находится в грудном молоке, слизи носоглотки и белке куриных яиц.

Итак, защитная функция белков проявляется в первую очередь в обезвреживании бактериальных и вирусных частиц в крови организма. В результате у него формируется способность противостоять болезнетворным агентам. Ее и называют иммунитетом. Белки, которые входят в состав наружного и внутреннего скелета, защищают внутреннее содержимое от механических повреждений. А белковые вещества, находящиеся в слюне и других средах, предотвращают действие на организм химических агентов. Другими словами, защитная функция белков заключается в обеспечении необходимых условий для всех процессов жизнедеятельности.

Глава 9. Биологические функции белков

Функции белков чрезвычайно многообразны. Каждый данный белок как вещество с определенным химическим строением выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях - несколько взаимосвязанных. Например, гормон мозгового слоя надпочечников адреналин, поступая в кровь, повышает потребление кислорода и артериальное давление, содержание сахара в крови, стимулирует обмен веществ, а также является медиатором нервной системы у холоднокровных животных.

1) Каталитическая (ферментативная) функция:
Многочисленные биохимические реакции в живых организмах протекают в мягких условиях при температурах, близких к 40 градусам С, и значениях рН близких к нейтральным. В этих условиях скорости протекания большинства реакций ничтожно малы, поэтому для их приемлемого осуществления необходимы специальные биологические катализаторы - ферменты . Даже такая простая реакция, как дегидратация угольной кислоты:

катализируется ферментом карбоангидразой . Вообще все реакции, за исключением реакции фотолиза воды , в живых организмах катализируются ферментами. Как правило, ферменты - это либо белки, либо комплексы белков с каким-либо кофактором - ионом металла или специальной органической молекулой. Ферменты обладают высокой, иногда уникальной, избирательностью действия. Например, ферменты, катализирующие присоединение -аминокислот к соответствующим т-РНК в процессе биосинтеза белка, катализируют присоединение только L-аминокислот и не катализируют присоединение D-аминокислот.

2) Транспортная функция белков:
Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время все биологические мембраны построены по единому принципу - двойной слой липидов , в который погружены различные белки, причем гидрофильные участки макромолекул сосредоточены на поверхности мембран, а гидрофобные "хвосты" - в толще мембраны. Такая структура непроницаема для таких важных компонентов, как сахара, аминокислоты, ионы щелочных металлов. Их проникновение внутрь клетки осуществляется с помощью специальных транспортных белков, вмонтированных в мембрану клеток. Например, у бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара - лактозы. Лактоза по международной номенклатуре обозначается -галаткозид, поэтому транспортный белок называют -галактозидпермеазой .

Важным примером транспорта веществ через биологические мембраны против градиента концентрации является Na-K-ый насос. В ходе его работы происходит перенос трех положительных ионов из клетки на каждые два положительных иона в клетку. Эта работа сопровождается накоплением электрической разности потенциалов на мембране клетки. При этом расщепляется АТФ, давая энергию. Молекулярная основа натрийкалиевого насоса была открыта недавно, это оказался фермент, расщепляющий АТФ, - натрий-калийзависимая АТФ-аза . Насос действует по принципу открывающихся и закрывающихся каналов. Связывание молекул "канального" белка с ионом натрия приводит к нарушению системы водородных связей, в результате чего меняется его конформация. Обычная -спираль, в которой на каждый виток приходится по 3,6 аминокислотного остатка, переходит в более "рыхлую" -спираль (4,4 аминокислотного остатка). В результате образуется внутренняя полость, достаточная для прохождения иона натрия, но слишком узкая для иона калия. После прохождения -спираль переходит в туго свернутую 310 -спираль (на один виток 3 аминокислотных остатка, а водородная связь - у каждого 10-го атома). При этом натриевый канал закрывается, а стенки соседнего калиевого канала расширяются, ионы калия проходят по ним в клетку. Натрий-калиевый насос работает по принципу перистальтического насоса (напоминает продвижение пищевого комка по кишечнику), принцип действия которого основан на переменном сжатии и расширении эластичных труб.

У многоклеточных организмов существует система транспорта веществ от одних органов к другим. В первую очередь это гемоглобин. Кроме того, в плазме крови постоянно находится транспортный белок - сывороточный альбумин . Этот белок обладает уникальной способностью образовывать прочный комплексы с жирными кислотами, образующимися при переваривании жиров, с некоторыми гидрофобными аминокислотами (например, с триптофаном), со стероидными гормонами, а также со многими лекарственными препаратами, такими, как аспирин, сульфаниламиды, некоторые пенициллины. В качестве еще одного распространенного примера белка-переносчика можно привести трансферрин (обеспечивает перенос ионов железа) и церуплазмин (переносчик ионов меди).

3) Рецепторная функция:
Большое значение, в особенности для функционирования многоклеточных организмов, имеют белки-рецепторы , вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток. В качестве наиболее исследованных можно привести рецепторы ацетилхолина, находящиеся на мембране клеток в ряде межнейронных контактов, в том числе в коре головного мозга, и у нервно-мышечных соединений. Эти белки специфично взаимодействуют с ацетилхолином и отвечает на это передачей сигнала внутрь клетки. После получения и преобразования сигнала нейромедиатор должен быть удален, чтобы клетка подготовилась к восприятию следующего сигнала. Для этого служит специальный фермент - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина до ацетата и холина.

Многие гормоны не проникают внутрь клеток-мишеней, а связываются со специфическими рецепторами на поверхности этих клеток. Такое связывание является сигналом, запускающим в клетке физиологические процессы. Примером является действие гормона инсулина в аденилатциклазной системе . Рецептор к инсулину представляет собой гликопротеид, пронизывающий плазмалемму. При связывании гормона с рецепторной частью этого сложного белка в нем происходит активация каталитической внутренней части, представляющей фермент аденилатциклазу . Этот фермент синтезирует из АТФ циклическую аденозинмонофосфорную кислоту (цАМФ), которая в свою очередь катализирует ключевую стадию окисления полисахаридов - превращение гликогена в мономерное производное глюкозы глюкозо-1-фосфат, который далее подвергается окислительной деструкции, сопровождающейся фосфорилированием большого количества АДФ.

4) Защитная функция:
Иммунная система обладает способностью отвечать на появление чужеродных частиц выработкой огромного числа лимфоцитов, способных специфически повреждать именно эти частицы, которыми могут быть чужеродные клетки, например патогенные бактерии, раковые клетки, надмолекулярные частицы, такие как вирусы, макромолекулы, включая чужеродные белки. Одна из групп лимфоцитов - В-лимфоциты , вырабатывает особые белки, выделяемые в кровеносную систему, которые узнают чужеродные частицы, образуя при этом высокоспецифичный комплекс на этой стадии уничтожения. Эти белки называются иммуноглобулины . Чужеродные вещества, вызывающие иммунный ответ называют антигенами , а соответствующие к ним иммуноглобулины - антителами . Если в роли антигена выступает большая молекула, например, молекула белка, то антитело опознает не всю молекулу, а ее определенный участок, называемый антигенной детерминантой . Тот факт, что иммуноглобулины взаимодействуют со сравнительно небольшой частью полимерного антигена, позволяет вырабатывать антитела, специфично узнающие некоторые небольшие молекулы, не встречающиеся в живой природе. Классический пример - динитрофенильный остаток. При введении экспериментальным животным конъюгата динитрофенола с каким-либо белком начинается выработка антител, специфично узнающих различные производные динитрофенола. Но при введении чистого динитрофенола, иммунного ответа нет. Такие вещества, способные служить антигенными детерминантами, но сами не способные вызвать иммунный ответ, называются гаптенами .

Антитела построены из четырех полипептидных цепей, связанных между собой дисульфидными мостиками. Упрощенная схема строения иммуноглобулина класса G представлена на следующем рисунке.

Две полипептидные цепи имеют размер порядка 200 аминокислотных остатков и называются легкими цепями (L-цепи). Две другие вдвое больше по размеру и называются тяжелыми цепями (H-цепи). На N-конце обеих цепей имеется вариабельная область размером немногим более 100 аминокислотных остатков, которая различна у иммуноглобулинов, настроенных на разные антигены - именно она определяет специфичность данной популяции лимфоцитов.


Схема строения молекулы иммуноглобулина: Н-цепь - тяжелая цепь, L-цепь - легкая цепь, VH и VL - вариабельные участки тяжелой и легкой цепей.

Вариабелная область формирует центр, непосредственно связывающийся с определенным антигеном или гаптеном остальная часть, составляющая у легкой цепи половину молекулы, а у тяжелой - 3/4, не зависит от вида иммуноглобулина. Эта область называется константной .

Согласно современным представлениям, каждый тип иммуноглобулина вырабатывается группой В-лимфоцитов, произошедших от одного общего предшественника. Такую группу лимфоцитов называют клоном . Первые успехи в изучении строения иммуноглобулинов были связаны с изучением иммуноглобулинов, полученных от больных миеломой (патология, связанная со сверхпродукцией определенного вида иммуноглобулинов). У больных, от одного злокачественно разросшегося клона В-лимфоцитов, вырабатывается огромное количество индивидуального иммуноглобулина, который сравнительно легко отделить от остальных. Далее производили слияние клеток миеломы как носителей способности к неограниченному размножению с нормальными В-лимфоцитами как носителями программы выработки антител определенной, задаваемой экспериментатором специфичности. Получающиеся клетки, гибридомы сохраняют способность к неограниченному размножению и вырабатывают при этом только определенные антитела. Так как гибридомы происходят из одной слитой клетки, то они представляют собой единый клон; получающиеся из них антитела поэтому называют моноклональными антителами (МАТ).

5) Структурная функция:
Наряду с белками, выполняющими тонкие высокоспециализированные функции, существуют белки, имеющие в основном структурное значение. Они обеспечивают механическую прочность и другие механические свойства отдельных тканей живых организмов. В первую очередь это коллаген - основной белковый компонент внеклеточного матрикса соединительной ткани. У млекопитающих коллаген составляет до 25% общей массы белков. Коллаген синтезируется в фибробластах - основных клетках соединительной ткани. Первоначально он образуется в виде проколлагена - предшественника, который проходит в фибробластах определенную химическую обработку, состоящую в окислении остатков пролина до гидроксипролина и некоторых остатков лизина до -гидроксилизина. Коллаген формируется в виде трех скрученных в спираль полипептидных цепей, которые уже вне фибробластов объединяются в коллагеновые фибриллы диаметром несколько сотен нанометров, а последние - уже в видимые под микроскопом коллагеновые нити.

В эластичных тканях - коже, стенках кровеносных сосудов, легких - помимо коллагена внеклеточный матрикс содержит белок эластин , способный довольно в широких пределах растягиваться и возвращаться в исходное состояние.

Еще один пример структурного белка - фиброин шелка, выделяемый гусеницами шелкопряда в период формирования куколки и являющийся основным компонентом шелковых нитей.

6) Двигательные белки
Мышечное сокращение является процессом, в ходе которого происходит превращение химической энергии, запасенной в виде макроэргических пирофосфатных связей в молекулах АТФ, в механическую работу. Непосредственными участниками процесса сокращения являются два белка - актин и миозин.

Миозин представляет собой белок необычного строения, состоящий из длинной нитевидной части (хвост) и двух глобулярных головок. Общая длина одной молекулы составляет порядка 1600 нм, из которых на долю головок приходится около 200 нм. Миозин обычно выделяется в виде гексамера, образованного двумя одинаковыми полипептидными цепями с молекулярной массой 200 000 каждая ("тяжелые цепи") и четырьмя "легкими цепями" с молекулярной массой около 20 000. Тяжелые цепи закручены спиралью одна вокруг другой, образуя хвост, и несут на одном конце глобулярные головки, ассоциированные с легкими цепями. На головках миозина находится два важных функциональных центра - каталитический центр, способный в определенных условиях осуществлять гидролитическое расщепление - -пирофосфатной связи АТФ, и центр, обеспечивающий способность специфично связываться с другим мышечным белком - актином.

Актин является глобулярным белком с молекулярной массой 42 000. В таком виде его называют G-актином. Однако он обладает способностью полимеризоваться, образуя длинную структуру, называемую F-актином. В такой форме актин способен взаимодействовать с головкой миозина, причем важной чертой этого процесса является зависимость от присутствия АТФ. При достаточно высокой концентрации АТФ комплекс, образованный актином и миозином, разрушается. После того как под действием миозиновой АТФазы (фермент) произойдет гидролиз АТФ, комплекс снова восстанавливается. Этот процесс легко наблюдать в растворе, содержащем оба белка. В отсутствии АТФ в результате образования высокомолекулярного комплекса раствор становится вязким. При добавлении АТФ вязкость резко понижается в результате разрушения комплекса, а затем начинает постепенно восстанавливаться по мере гидролиза АТФ. Эти взаимодействия играют важную роль в процессе мышечного сокращения.

7) Антибиотики:
Большую и чрезвычайно важную в практическом отношении группу природных органических соединений составляют антибиотики - вещества микробного происхождения, выделяемые специальными видами микроорганизмов и подавляющие рост других, конкурирующих микроорганизмов. Открытие и применение антибиотиков произвело в 40-ые гг. революцию в лечении инфекционных заболеваний, вызываемых бактериями. Следует отметить, что на вирусы в большинстве случаев антибиотики не действуют и применение их в качестве противовирусных препаратов неэффективно.

Первыми в практику были введены антибиотики группы пенициллина . Примерами их могут служить бензилпенициллин и ампициллин :

Сходны с ним по строению антибиотики группы цефалоспоринов , примером которых может служить цефамицин С . Общим у этих антибиотиков является наличие -лактамного кольца . Механизм действия их состоит в торможении одной из стадий формирования муреина - пептидогликана, формирующего клеточную стенку бактерий.


Антибиотики чрезвычайно многообразны по своей химической природе и по механизму действия. Некоторые из широко используемых антибиотиков взаимодействуют с рибосомами бактерий, тормозя синтез белка в бактериальных рибосомах, в то же время практически не взаимодействуют с эукариотическими рибосомами. Поэтому они губительны для бактериальных клеток и мало токсичны для человека и животных. К их числу относятся хорошо известные стрептомицин, хлорамфеникол (левомицетин) :


Еще одним известным антибиотиком является тетрациклин:

Один из самых эффективных противотуберкулезных препаратов антибиотик рифампицин - блокирует работу прокариотических РНК-полимераз ферментов, катализирующих биосинтез РНК, - связываясь ферментом, но в то же время не обладает способностью связываться с РНК-полимеразами эукариот:

Интенсивно исследуются антибиотики, взаимодействующие с ДНК и этим нарушающие процессы, связанные с реализацией заложенной в ней наследственной информацией. Антибиотики с таким механизмом действия обычно высокотоксичны и используются только в химиотерапии злокачественных опухолей. В качестве примера можно привести актиномицин D :


8) Токсины:
Ряд живых организмов в качестве защиты от потенциальных врагов вырабатывают сильно ядовитые вещества - токсины. Многие из них являются белками, однако, встречаются среди них и сложные низкомолекулярные органические молекулы. В качестве примера такого вещества можно привести ядовитое начало бледной поганки - -аманитин:


Это соединение специфично блокирует синтез эукариотических и-РНК. Для человека смертельной дозой является несколько мг этого токсина.

Включайся в дискуссию
Читайте также
Несколько слов о стихотворениях Ф
Влияние человека на литосферу
Петр I допрашивает царевича Алексея Петровича в Петергофе Петр 1 допрашивает царевича алексея история