Подпишись и читай
самые интересные
статьи первым!

Основной закон вращательного движения твердого тела. Вращательное движение тела

ЛЕКЦИЯ №4

ОСНОВНЫЕ ЗАКОНЫ КИНЕТИКИ И ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. МЕХАНИЧЕСКИЕ

СВОЙСТВА БИОТКАНЕЙ. БИОМЕХАНИЧЕСКИЕ

ПРОЦЕССЫ В ОПОРНО-ДВИГАТЕЛЬНОМ АППАРАТЕ

ЧЕЛОВЕКА.

1. Основные законы кинематики вращательного движения.

Вращательные движения тела вокруг неподвижной оси является наиболее простым видом движения. Оно характеризуется тем, что любые точки тела описывают окружности, центры которых расположены на одной прямой 0 ﺍ 0 ﺍﺍ , которая называется осью вращения (рис.1).

При этом положение тела в любой момент времени определяется углом поворота φ радиуса вектора R любой точки А относительно своего начального положения. Зависимость его от времени:

(1)

является уравнением вращательного движения. Быстрота вращения тела характеризуется угловой скоростью ω. Угловая скорость всех точек вращательного тела одинакова. Она является векторной величиной. Этот вектор направлен по оси вращения и связан с направлением вращения правилом правого винта:

. (2)

При равномерном движении точки по окружности

, (3)

где Δφ=2π – угол, соответствующий одному полному обороту тела, Δt=T – время одного полного оборота, или период вращения. Единица измерения угловой скорости [ω]=c -1 .

При равномерном движении ускорение тела характеризуется угловым ускорением ε (вектор его расположен аналогично вектору угловой скорости и направлен согласно с ним при ускоренном и в обратном направлении – при замедленном движении):

. (4)

Единица измерения углового ускорения [ε]=c -2 .

Вращательное движение можно характеризовать также линейной скоростью и ускорением его отдельных точек. Длина дуги dS, описываемой любой точкой А (рис.1) при повороте на угол dφ определяется по формуле: dS=Rdφ. (5)

Тогда линейная скорость точки :

. (6)

Линейное ускорение а :

. (7)

2. Основные законы динамики вращательного движения.

Вращение тела вокруг оси вызывается силой F, приложенной к любой точке тела, действующей в плоскости перпендикулярной оси вращения и направленной (или имеющей составляющую в этом направлении) перпендикулярно радиусу вектору точки приложения (рис.1).

Моментом силы относительно центра вращения называют векторную величину, численно равную произведению силына длину перпендикуляраd, опущенного из центра вращения на направление силы, называемого плечом силы. На рис.1 d=R, поэтому

. (8)

Момент вращающей силы является векторной величиной. Векторприложен к центру окружности О и направлен вдоль оси вращения. Направление векторасогласуется с направлением силы по правилу правого винта. Элементарная работаdA i , при повороте на малый угол dφ, когда тело проходит малый путь dS, равна:

Мерой инертности тела при поступательном движении является масса. При вращении тела мера его инертности характеризуется моментом инерции тела относительно оси вращения.

Моментом инерции I i материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния её от оси (рис.2):

. (10)

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит тело:

. (11)

Или в пределе (n→∞):
, (12)

где интегрирование производится по всему объёмуV. Подобным образом вычисляются моменты инерции однородных тел правильной геометрической формы. Момент инерции выражается в кг·м 2 .

Момент инерции человека относительно вертикальной оси вращения, проходящей через центр масс (центр масс человека находится в сагиттальной плоскости несколько впереди второго крестового позвонка), в зависимости от положения человека имеет следующие значения: 1,2 кг·м 2 при стойке «смирно»; 17 кг·м 2 – в горизонтальном положении.

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела:

Продифференцировав (14), получим элементарное изменение кинетической энергии:

. (15)

Приравняв элементарную работу (формула 9) внешних сил к элементарному изменению кинетической энергии (формула 15), получим:
, откуда:
или, учитывая, что
получим:
. (16)

Это уравнение называется основным уравнением динамики вращательного движения. Эта зависимость аналогична IIзакону Ньютона для поступательного движения.

Моментом импульса L i материальной точки относительно оси называется величина, равная произведению импульса точки на расстояние её до оси вращения:

. (17)

Момент импульса Lтела, вращающегося вокруг неподвижной оси:

Момент импульса есть векторная величина, ориентированная по направлению вектора угловой скорости.

Теперь возвратимся к основному уравнению (16):

,
.

Подведём постоянную величину Iпод знак дифференциала и получим:
, (19)

где Mdtназывают импульсом момента силы. Если на тело не действуют внешние силы (М=0), то равно нулю и изменение момента количества движения (dL=0). Это означает, что момент импульса остаётся постоянным:
. (20)

Этот вывод называется законом сохранения момента импульса относительно оси вращения. Его используют, например, при вращательных движениях относительно свободной оси в спорте, например в акробатике и т.д. Так, фигурист на льду, изменяя в процессе вращения положение тела и соответственно момент инерции относительно оси вращения, может регулировать свою скорость вращения.

Для вывода этого закона рассмотрим простейший случай вращательного движения материальной точки. Разложим силу, действующую на материальную точку на две составляющие: нормальную -и касательную -(рис. 4.3). Нормальная составляющая силы приведёт к появлению нормального (центростремительного) ускорения: ; , гдеr = ОА - радиус окружности.

Касательная сила вызовет появление касательного ускорения. В соответствии со вторым законом Ньютона F t =ma t или F cos a=ma t .

Выразим касательное ускорение через угловое: a t =re. Тогда F cos a=mre. Умножим это выражение на радиус r: Fr cos a=mr 2 e. Введём обозначение r cos a = l, где l - плечо силы, т.е. длина перпендикуляра, опущенного из оси вращения на линию действия силы . Посколькуmr 2 =I - момент инерции материальной точки, а произведение=Fl= M - момент силы, то

Произведение момента силы М на время её действия dt называется импульсом момента силы. Произведение момента инерции I на угловую скоростьw называется моментом импульса тела: L=Iw. Тогда основной закон динамики вращательного движения в форме (4.5) можно сформулировать следующим образом: импульс момента силы равен изменению момента импульса тела. В такой формулировке этот закон аналогичен второму закону Ньютона в виде (2.2).

Конец работы -

Эта тема принадлежит разделу:

Краткий курс физики

Министерство образования и науки Украины.. одесская национальная морская академия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные единицы СИ
В настоящее время общепринятой является Международная система единиц - СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные -

Механика
Механика - наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

Нормальное и касательное ускорения
Рис. 1.4 Движение материальной точки по криволинейной траект

Законы Ньютона
Динамика - раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

Закон сохранения импульса
Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

Связь между работой и изменением кинетической энергии
Рис. 3.3 Пусть тело массой т движется вдоль оси х под

Связь между работой и изменением потенциальной энергии
Рис. 3.4 Эту связь мы установим на примере работы силы тяжес

Закон сохранения механической энергии
Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

Соударения
Рассмотрим важный случай взаимодействия твёрдых тел - соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

Закон сохранения момента импульса
Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

Гироскоп
Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

Общая характеристика колебательных процессов. Гармонические колебания
Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

Колебания пружинного маятника
Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

Энергия гармонического колебания
Рассмотрим теперь на примере пружинного маятника процессы изменения энергии в гармоническом колебании. Очевидно, что полная энергия пружинного маятника W=Wk+Wp, где кинетическая

Сложение гармонических колебаний одинакового направления
Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

Затухающие колебания
В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

Вынужденные колебания
В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

Упругие (механические) волны
Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны - процесс распространения в упругой среде механически

Интерференция волн
Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

Стоячие волны
Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

Эффект Допплера в акустике
Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

Основное уравнение молекулярно-кинетической теории газов
Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

Распределение молекул по скоростям
Рис.16.1 Предположим, чтонам удалось измерить скорости всех

Барометрическая формула
Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

Распределение Больцмана
Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const: P =

Первое начало термодинамики и его применение к изопроцессам
Первое начало термодинамики - это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

Число степеней свободы. Внутренняя энергия идеального газа
Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в п

Адиабатный процесс
Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

Идеальная тепловая машина Карно
Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

Второе начало термодинамики
Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему
В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

Энтропия
Введём теперь новый параметр состояния термодинамической системы - энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электростатического поля служит электрический заряд - внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

Энергия электростатического поля
Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

Основные характеристики тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

Закон Ома для однородного участка цепи
Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

Закон Джоуля - Ленца
Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

Правила Кирхгофа
Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

Контактная разность потенциалов
Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

Эффект Зеебека
Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

Эффект Пельтье
Второе термоэлектрическое явление - эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени

ЛАБОРАТОРНАЯ РАБОТА №107

Проверка основного уравнения динамики

вращательного движения

Цель работы: Экспериментальная проверка основного закона динамики вращательного движения с помощью маятника Обербека.

Приборы и принадлежности: маятник Обербека с миллисекундомером FРМ – 15, штангенциркуль.

Теоретическое введение

При рассмотрении вращения твердого тела с динамической точки зрения наряду с понятием о силах вводится понятие о моментах сил и наряду с понятием о массе – понятие о моменте инерции.

Пусть материальная точка массой т под действием внешней силы движется криволинейно относительно неподвижной точки О. На материальную точку действует момент силы и точка обладает моментом импульса. Положение движущейся материальной точки определяется радиус-вектором , проведенным к ней из точки О (рис.1). Моментом силы относительно неподвижной точки О называется векторная величина , равная векторному произведению радиус-вектора вектор силы


Вектор направлен перпендикулярно плоскости векторов и и его направление соответствует правилу правого винта. Модуль момента сил равен


где a - угол между векторами и , h=rsin a - плечо силы, равное кратчайшему расстоянию от точки О до линии действия (вдоль которой действует сила) силы .

Моментом импульса относительно точки О называется векторная величина, равная векторному произведению радиуса вектора на вектор импульса , то есть

Вектор направлен перпендикулярно плоскости векторов и (рис.2). Модуль момента импульса равен

где b - угол между направлением векторов и .

Основной закон динамики вращательного движения

Пусть механическая система, состоящая из N материальных точек под действием внешних сил, результирующая которых , совершает криволинейное движение относительно неподвижной точки О, то есть

где - радиус-вектор, проведенный от точки О до i -ой материальной точки, - вектор силы, действующей на i -ую материальную точку.

Также можно найти момент импульса системы

где - момент импульса i -ой материальной точки.

Момент импульса зависит от времени t , так как скорость является функцией от времени. Взяв производную от момента импульса системы по времени t , получим

Формула (7) является математическим выражением основного закона динамики вращательного движения системы, согласно которому скорость изменения момента импульса системы по времени равна результирующему моменту внешних сил, действующих на систему.

Закон (7) справедлив и для твердого тела, т.к. твердое тело можно рассматривать как совокупность материальных точек.

Пусть в частном случае твердое тело вращается относительно неподвижной оси, проходящей через центр масс, под действием внешней силы . Твердое тело разбиваем на материальные точки. Для материальной точки массой m i уравнение движения запишется

Момент импульса для i – ой материальной точки равен

Поскольку при вращательном движении b = 90 0 , то и линейная скорость связана с угловой скоростью формулой Тогда (9) можно записать в виде

Величина представляет собой момент инерции материальной точки относительно оси Z. Тогда (10) примет вид

С учетом (11) основной закон динамики вращательного движения твердого тела относительно неподвижной оси запишется

где - момент инерции твердого тела относительно оси Z.

При

где - угловое ускорение. Согласно основному уравнению динамики вращательного движения (12) результирующий момент внешней силы, действующей на тело, равен произведению момента инерцииJ тела на его угловое ускорение.


Из уравнения (12) следует, что при J = const угловое ускорение тела

прямо пропорционально моменту внешних сил относительно оси вращения, т.е.

При M = const угловое ускорение обратно пропорционально моменту инерции тела, т.е.

Целью настоящей работы является проверка соотношений (13) и (14), а, следовательно, и основного уравнения динамики вращательного движения (12), следствиями которого они являются.

Описание рабочей установки и метода измерений

Для проверки соотношений (13) и (14) используется маятник Обербека, представляющий собой инерционное колесо в виде крестовины. На четырех взаимно перпендикулярных стержнях 1 расположены четыре одинаковых цилиндрических груза 2, которые можно перемещать вдоль стержней и закреплять на определенном расстоянии от оси. Грузы закрепляются симметрично, т.е. так, чтобы их центр масс совпадал с осью вращения. На горизонтальной оси крестовины имеется двухступенчатый диск 3, на который наматывается нить. Один конец нити прикреплен к диску, а ко второму концу нити подвешен груз 4, под действием которого прибор приводится во вращение. Общий вид маятника Обербека FРМ-06 изображен на рис.3. Для удержания системы крестовины вместе с грузами в состоянии покоя используется тормозной электромагнит. С целью отсчета высоты падения грузов на колонне нанесена миллиметровая шкала 5. Время падения груза 4 измеряется миллисекундомером FРМ-15, к которому подключены фотоэлектрические датчики №1(6) и №2(7). Фотоэлектрический датчик №2(7) вырабатывает электроимпульс конца измерений времени и включает тормозной электромагнит.

Если предоставить возможность грузу 4 двигаться, то это движение будет происходить с ускорением a .

где t - время движения груза с высоты h . При этом шкив со стержнями и находящимися на них грузами будет вращаться с угловым ускорением e .

где r - радиус шкива.

Вращающий момент силы, приложенной к крестовине и сообщающий угловое ускорение вращающейся части прибора, находим по формуле

где Т - сила натяжения шнура. По второму закону Ньютона для груза 4 имеем

откуда

где g - ускорение свободного падения.

Из формул (12), (15), (16), (17) и (19) имеем

Порядок выполнения работы и обработка результатов измерений

1. Измерить штангенциркулем радиус большого и малого шкивов r 1 и r 2 .

2. Определить массу груза 4 взвешиванием на технических весах с точностью ± 0,1 г.

3. Проверить соотношение (13). Для этого:

- закрепить цилиндрические подвижные грузы на стержнях на ближайшем расстоянии от оси вращения так, чтобы крестовина была в положении безразличного равновесия;

- намотать нить на большой шкив радиуса r 1 и измерить время движения груза t с высоты h миллисекундомером, для чего

- включить сетевой шнур измерителя в сеть питания;

- нажать клавишу «СЕТЬ» и проверить, показывают ли все индикаторы измерителя нуль и горят ли все индикаторы обоих фотоэлектрических датчиков;

- переместить груз в верхнее положение и проверить, находится ли схема в состоянии покоя;

- нажать клавишу «ПУСК» и миллисекундомером измерить время движения груза;

- нажать клавишу «СБРОС» и проверить, произошло ли обнуление показаний измерителя и освобождение блокировки электромагнитом;

- переместить груз в верхнее положение, отжать клавишу «ПУСК» и проверить, произошла ли повторная блокировка схемы;

- опыт повторить 5 раз. Высоту h не рекомендуется менять в течение всей работы;

- по формулам (15), (16), (20) вычислить значения a 1 , e 1 , М 1 ;

- не меняя расположения подвижных грузов и оставляя тем самым неизменным момент инерции системы, опыт повторить, наматывая нить с грузом на малый шкив радиусом r 2 ;

- по формулам (15), (16), (20) вычислить значения a 2 , e 2 , М 2 ;

- проверить справедливость следствия основного закона динамики вращательного движения:

, при

- данные результатов измерений и вычислений занести в таблицы 1 и 2.

4. Проверить соотношение (1 4 ). Для этого:

- раздвинуть подвижные грузы до упоров на концах стержней, но так, чтобы крестовина снова была в положении безразличного равновесия;

- для малого шкива r 2 определить время движения груза t / по данным 5 опытов;

- по формулам (15), (20), (21) определить значения a / , e / , J 1 ;

- при проверке соотношения при можно пользоваться значениями предыдущего опыта, положив и ;

- по формуле (21) определить значение J 2 ;

- вычислить значения и .

- Результаты измерений и вычислений занести в таблицу 3.

Таблица 1

r 1

m

h

t 1

< t 1 >

a 1

e 1

M 1

кг

м/с 2

с -2

Н × м

Таблица 2

r 2

t 2

< t 2 >

a 2

e 2

M 2

M 1 /M 2

e 1 / e 2

м/с 2

с -2

Н × м

Таблица 3

r 2

t /

< t / >

a /

e /

J 1

a //

J 2

e //

e / / e //

J 2 / J 1

м/с 2

с -2

кг × м 2

м/с 2

кг × м 2

с -2

Вопросы для допуска к работе

1. Какова цель работы?

2. Сформулируйте основной закон динамики вращательного движения. Поясните физический смысл величин, входящих в данный закон, укажите единицы их измерения в «СИ».

3. Опишите устройство рабочей установки.

Вопросы для защиты работы

1. Дайте определения момента сил, момента импульса материальной точки относительно неподвижной точки О.

2. Сформулируйте основной закон динамики вращательного движения твердого тела относительно неподвижной точки О и неподвижной оси Z.

3. Дайте определение момента инерции материальной точки и твердого тела.

4. Выведите рабочие формулы.

5. Выведите соотношение при и при

6. Есть ли критические замечания к данной работе?

Моментом силы относительно неподвижной точки O называется векторная физическая величина, определяемая векторным произведением радиус-вектора , проведённого из точки O в точку A приложения силы, на силу (рис.1.4.1):

(1.4.1)

Здесь – псевдовектор, его направление совпадает с направлением движения правого винта при его вращении отк.

Модуль момента силы

,

где
– угол междуи,
– кратчайшее расстояние между линией действия силы и точкойО плечо силы .

Моментом силы относительно неподвижной оси z
, равная проекции на эту ось векторамомента силы, определённого относительно произвольной точки
O данной оси z (рис. 1.4.1).

Работа при вращении тела равна произведению момента действующей силы на угол поворота:

.

С другой стороны эта работа идёт на увеличение его кинетической энергии:

, но

, поэтому

, или
.

Учитывая, что
, получим

. (1.4.2)

Получили основное уравнение динамики вращательного движения твёрдого тела относительно неподвижной оси: момент внешних сил, действующих на тело, равен произведению момента инерции тела на угловое ускорение.

Можно показать, что если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство:


,

где I – главный момент инерции тела (момент инерции относительно главной оси).

1.5 Момент импульса и закон его сохранения

Моментом импульса материальной точки А относительно неподвижной точки О называется векторная физическая величина, определяемая векторным произведением :

(1.5.1)

где – радиус-вектор, проведённый из точкиО в точкуА ;
– импульс материальной точки (рис. 1.5.1).
– псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении отк.

Модуль вектора момента импульса

,

где
– угол между векторамии,– плечо вектораотносительно точкиО .

Моментом импульса относительно неподвижной оси z называется скалярная величина
, равная проекции на эту ось вектора момента импульса, определённого относительно произвольной точки
О данной оси. Значение момента импульса
не зависит от положения точкиО на осиz .

При вращении абсолютно твёрдого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиусас некоторой скоростью. Скоростьи импульс
перпендикулярны этому радиусу, т.е. радиус является плечом вектора
. Поэтому можно записать, что момент импульса отдельной частицы

и направлен по оси в сторону, определяемую правилом правого винта.

Момент импульса твёрдого тела относительно оси есть сумма моментов импульсов отдельных частиц:

.

Используя формулу
, получим

, т.е.
. (1.5.2)

Таким образом, момент импульса твёрдого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (1.5.2) по времени:

, т.е.
. (1.5.3)

Это выражение – ещё одна форма основного уравнения (закона) динамики вращательного движения твёрдого тела относительно неподвижной оси: производная по времени от момента импульса механической системы (твёрдого тела) относительно оси равна главному моменту всех внешних сил, действующих на эту систему, относительно той же оси .

Можно показать, что имеет место векторное равенство
.

В замкнутой системе момент внешних сил
и
, откуда

. (1.5.4)

Выражение (1.5.4) представляет собой закон сохранения момента импульса : момент импульса замкнутой системы сохраняется.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (таблица 1.5.1).

Таблица 1.5.1

Поступательное

движение

Вращательное

движение

Функциональная

зависимость

Линейное перемещение

перемещение

Линейная скорость

скорость

Линейное ускорение

ускорение

(для материальной точки)

импульса

Основное уравнение динамики



Работа

Работа вращения

Кинетическая энергия

Кинетическая энергия вращения

Закон сохранения импульса

Закон сохранения момента импульса

Вывод основного закона динамики вращательного движения. К выводу основного уравнения динамики вращательного движения. Динамика вращательного движения материальной точки. В проекции на тангенциальное направление уравнение движения примет вид: Ft = mt.

15.Вывод основного закона динамики вращательного движения.

Рис. 8.5. К выводу основного уравнения динамики вращательного движения.

Динамика вращательного движения материальной точки. Рассмотрим частицу массы m, вращающуюся вокруг токи О по окружности радиуса R , под действием результирующей силы F (см. рис. 8.5). В инерциальной системе отсчета справедлив 2 ой закон Ньютона. Запишем его применительно к произвольному моменту времени:

F = m· a .

Нормальная составляющая силы не способна вызвать вращения тела, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление уравнение движения примет вид:

F t = m·a t .

Поскольку a t = e·R, то

F t = m·e·R (8.6)

Умножив левую и правую части уравнения скалярно на R, получим:

F t ·R= m·e·R 2 (8.7)
M = I·e. (8.8)

Уравнение (8.8) представляет собой 2 ой закон Ньютона (уравнение динамики) для вращательного движения материальной точки. Ему можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения (см. рис. 8.5):

M = I· e . (8.9)

Основной закон динамики материальной точки при вращательном движении можно сформулировать следующим образом:

произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.


А также другие работы, которые могут Вас заинтересовать

66899. Язык и мышление, Логическая и языковая картины мира 132.5 KB
Невербальное мышление осуществляется посредством наглядно-чувственных образов, возникающих в результате восприятия впечатлений действительности, которые сохраняются памятью и затем воссоздаются воображением. Невербальное мышление характерно в той или иной степени для некоторых животных.
66900. ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА 51.5 KB
К механическим свойствам относят прочность сопротивление металла сплава деформации и разрушению и пластичность способность металла к необратимой без разрушения деформации остающейся после удаления деформирующих сил. Кроме того напряжения возникают в процессе кристаллизации при неравномерной...
66902. Особенности расследования убийств, совершенных на бытовой почве 228 KB
Криминалистическая характеристика убийств. Особенности первоначального этапа расследования. Типовые ситуации первоначального этапа расследования. Особенности организации и производства первоначальных следственных. Особенности применения специальных познаний...
66904. КУЛЬТУРА ДРЕВНЕЙШЕГО МИРА 62.5 KB
Литературоведение - наука о художественной литературе, ее происхождении, сущности и развитии. Современное литературоведение состоит из трех самостоятельных, но тесно связанных между собой дисциплин (разделов): теории литературы, истории литературы и литературной критики
66905. Логические элементы 441 KB
Рассматриваются принципы работы, характеристики и типовые схемы включения простейших логических элементов - инверторов, буферов, элементов И и ИЛИ, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.
66906. Модели и процессы управления проектами программных средств 257.5 KB
Назначение методологии СММ/CMMI – системы и модели оценки зрелости – состоит в предоставлении необходимых общих рекомендаций и инструкций предприятиям, производящим ПС, по выбору стратегии совершенствования качества процессов и продуктов, путем анализа степени их производственной зрелости и оценивания факторов...
Включайся в дискуссию
Читайте также
Шкала измерений в социологии Статистические методы в психологии
Ортогональная система векторов Ортогональная система векторов
Несколько слов о стихотворениях Ф