Подпишись и читай
самые интересные
статьи первым!

Состояние мантии земли. Строение мантии земли и ее состав

Или, сокращенно, Мохо. На ней происходит резкое увеличение сейсмических скоростей - от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км.

В начале XX века активно обсуждалась природа границы Мохоровичича. Некоторые исследователи предполагали, что там происходит метаморфическая реакция, в результате которой образуются породы с высокой плотностью. В качестве такой реакции предлагалась реакция эклогитизации, в результате которой породы базальтового состава превращаются в эклогит , и их плотность увеличивается на 30 %. Другие ученые объясняли резкое увеличение скоростей сейсмических волн изменением состава пород - от относительно легких коровых кислых и основных к плотным мантийным ультраосновным породам. Это точка зрения сейчас является общепризнанной.

Отличие состава земной коры и мантии - следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и легкую часть - кору и плотную и тугоплавкую мантию.

Источники информации о мантии

Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.

Мантию изучают по следующим данным:

  • Геофизические данные. В первую очередь данные о скоростях сейсмических волн, электропроводности и силе тяжести.
  • Мантийные расплавы - перовскиты , базальты , коматииты, кимберлиты , лампроиты, карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии. Состав расплава является следствием состава плавившихся пород, механизма плавления и физико-химических параметров процесса плавления. В целом, реконструкция источника по расплаву - сложная задача.
  • Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами - кимберлитами, щелочными базальтами и др. Это ксенолиты , ксенокристы и алмазы . Алмазы занимают среди источников информации о мантии особое место. Именно в алмазах установлены самые глубинные минералы, которые, возможно, происходят даже из нижней мантии. В таком случае эти алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.
  • Мантийные породы в составе земной коры. Такие комплексы в наибольшей степени соответствуют мантии, но и отличаются от неё. Самое главное различие - в самом факте их нахождения в составе земной коры, из чего следует, что они образовались в результате не совсем обычных процессов и, возможно, не отражают типичную мантию. Они встречаются в следующих геодинамических обстановках:
  1. Альпинотипные гипербазиты - части мантии, внедренные в земную кору в результате горообразования. Наиболее распространены в Альпах , от которых и произошло название.
  2. Офиолитовые гипербазиты - передотиты в составе офиолитовых комлексов - частей древней океанической коры .
  3. Абиссальные перидотиты - выступы мантийных пород на дне океанов или рифтов .

Эти комплексы имеют то преимущество, что в них можно наблюдать геологические соотношения между различными породами.

Недавно было объявлено, что японские исследователи планируют предпринять попытку пробурить океаническую кору до мантии. Начало бурения планируется на 2007 год. Обсуждалась также возможность проникновения к границе Мохоровичича и в верхнюю мантию с помощью самопогружающихся вольфрамовых капсул, обогреваемых теплом распадающихся радионуклидов (M.I. Ojovan, F.G.F. Gibb, P.P. Poluektov, E.P. Emets. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy , 99 , No. 2, 556-562 (2005)).

Основной недостаток полученной из этих фрагментов информации - невозможность установления геологических соотношений между различными типами пород. Это кусочки мозаики. Как сказал классик [кто? ] , «определение состава мантии по ксенолитам напоминает попытки определения геологического строения гор по галькам, которые из них вынесла речка».

Состав мантии

Мантия сложена главным образом ультаосновными породами : перовскитами , перидотитами , (лерцолитами , гарцбргитами, верлитами, пироксенитами), дунитами и в меньшей степени основными породами - эклогитами .

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.

Содержание основных элементов в мантии Земли в массовых процентах
Элемент Концентрация Оксид Концентрация
44,8
21,5 SiO 2 46
22,8 MgO 37,8
5,8 FeO 7,5
2,2 Al 2 O 3 4,2
2,3 CaO 3,2
0,3 Na 2 O 0,4
0,03 K 2 O 0,04
Сумма 99,7 Сумма 99,1

Строение мантии

Процессы, идущие в мантии, оказывают самое непосредственное влияние на земную кору и поверхность земли, являются причиной движения континентов, вулканизма, землетрясений, горообразования и формирования рудных месторождений. Всё больше свидетельств того, что на саму мантию активно влияет металлическое ядро Земли .

Список литературы

  • Пущаровский Д. Ю., Пущаровский Ю. М. Состав и строение мантии Земли // Соросовский Образовательный Журнал, 1998, No 11, с. 111-119 .
  • Ковтун А. А. Электропроводность Земли // Соросовский Образовательный Журнал, 1997, No 10, с. 111-117

Ссылки

  • Images of the Earth’s Crust & Upper Mantle // International Geological Correlation Programme (IGCP), Project 474
  • lenta.ru - «Глубинные слои Земли оказались полупрозрачными»

Wikimedia Foundation . 2010 .

Смотреть что такое "Земная мантия" в других словарях:

    У этого термина существуют и другие значения, см. Мантия (значения). Структура Земли Мантия часть Земли (… Википедия

    Структура Земли Мантия часть Земли (геосфера), расположенная непосредственно под корой и выше ядра. В мантии находится большая часть вещества Земли. Мантия есть и на других планетах. Земная мантия находится в диапазоне от 30 до 2900 км. Границей … Википедия

    В настоящее время под. З. к. подразумевается сиалическая оболочка Земли, располагающаяся выше границы Мохоровичича (М), слагающая верхнюю часть литосферы Земли и отделяющаяся от подстилающего субстрата скачком в изменении скорости распространения … Геологическая энциклопедия

    Земная кора - Земная кора, строение: 1 вода; 2 осадочный слой; 3 гранитный слой; 4 базальтовый слой континентальной коры; 5 базальтовый слой океанической коры; 6 магматический слой океанической коры (породы габроидного состава); 7 вулканические острова; 8, 9… … Иллюстрированный энциклопедический словарь

    Общая структура планеты Земля Земная кора внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится … Википедия

    земная оболочка - ▲ оболочка Земля геосферы: магнитосфера. атмосфера. гидросфера совокупность всех водных объектов земного шара. океан. криосфера. литосфера. недра Земли. земная кора мантия. верхняя мантия. нижняя мантия. астеносфера. ядро земли. ЗЕМНАЯ… … Идеографический словарь русского языка

    Оболочка «твёрдой» Земли, расположенная между земной корой и ядром Земли. Составляет 83% объёма Земли (без атмосферы) и 67% её массы. Верхняя граница проходит на глубине от 5 10 до 70 км по Мохоровичича поверхности, нижняя на глубине 2900 км по… … Энциклопедический словарь

    Оболочка «твёрдой» Земли, расположенная между земной корой (См. Земная кора) и ядром Земли (См. Ядро Земли). Занимает 83 % Земли (без атмосферы) по объёму и 67 % по массе. От земной коры её отделяет Мохоровичича поверхность, на которой… … Большая советская энциклопедия

Мантия земли - геосфера, расположенная между земной корой и ядром. Мантия составляет 83% объема и 67% всей массы Земли. В ней выделяют несколько слоев -- верхнюю и нижнюю мантии. Между ними нет четкой границы. Кроме того, верхнюю мантию еще подразделяют на несколько геосфер. Мантия занимает огромный диапазон глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру.

Согласно современным научным представлениям, состав земной мантии считается похожим на состав каменных метеоритов. В состав мантии преимущественно входят химические элементы, находившиеся в твёрдом состоянии или в твёрдых химических соединениях во время формирования Земли: кремний, железо, кислород, магний и др.

Верхняя мантия -- геосфера, расположенная между земной корой и нижней мантией Земли. Сверху отделена от коры поверхностью Мохоровичича. Нижняя граница верхней мантии нечёткая, находится на глубине около 900 км. Верхняя мантия играет важную роль в тектонических, магматические и метаморфических процессах, происходящих в земной коре, в образовании полезных ископаемых и т.д.

Субстрат. Субстрат - слой верхней мантии, располагающийся на астеносфере. Вместе с земной корой образует литосферу. Представляет собой жесткую платформу, на которой в процессе геологического развития, возникла земная кора. Предполагается, что эта геосфера имеет пониженную вязкость, в связи с чем, испытывает медленные перемещения (токи), под действием нижележащих структур. Именно с этим связывают причину перемещения литосферных плит. Кроме того, весь субстрат находится в состоянии изостазии, обуславливающем взаимное уравновешивание плит: при опускании одних, поднимаются другие.

Астеносфера. Скорости сейсмических волн в мантии растут с глубиной. Но начиная с глубины 80--100 км под материками и около 50 км под океанами они понижаются на протяжении около 100 км, потом начинают повышаться и на глубине около 400 км приходят опять к нормальным значениям, соответствующим общему ходу кривых на графике скоростей в этой части мантии. Особенно заметно понижение скорости поперечных волн. Эту зону пониженных скоростей сейсмических волн называют астеносферой или слоем Гутенберга.

Из-за большой температуры и давления, вещество не расплавляется, а переходит в аморфное состояние. Есть и другое предположение: в слое Гутенберга расплавились только самые легкоплавкие кристаллы, так что в твердом в общем веществе вкраплены отдельные капли жидкости. Из обоих предположений вытекает, что для астеносферы характерна пониженная вязкость, а это очень важно для объяснения многих процессов, протекающих на Земле.

Дело в том, что горные породы при большом давлении и температуре могут медленно течь, оставаясь твердыми, как течет ледник с горы. Очевидно, что перетекание материала при неравномерном давлении как раз и происходит в астеносфере. Считают, что изостазия возникает благодаря перетеканию материала в слое Гутенберга.

При измерении скорости распространения сейсмических волн, наблюдается, что поперечные упругие волны свободно проходят сквозь кору и всю мантию, а известно, что сквозь жидкость они не проходят. Это указывает на то, что ни в коре, ни в мантии нет сплошного жидкого слоя. Твердость верхней мантии подтверждается еще и тем, что в ней (как и в коре) наблюдаются очаги землетрясений -- в некоторых областях до глубины 700 км. Глубже землетрясений не бывает.

Слой Голицына. Оставшаяся часть верхней мантии под астеносферой называется слоем Голицына. В слое Голицына скорости сейсмических волн с глубиной растут особенно быстро. Это объясняется тем, что под действием очень большого давления, силикаты приобретают другую форму кристаллов, с более плотной упаковкой атомов. Это и приводит к сильному увеличению скоростей сейсмических волн. Одновременно должна возрастать и плотность, поэтому в слое Голицына предполагают быстрый рост плотности с глубиной.

Слой Голицына служит границей раздела между верхней и нижней мантией и располагающийся на глубине около 670 км.

Нижняя мантия - часть мантии, находящаяся под астеносферой и залегающая на глубинах 670 -- 2900 км. В нижней мантии скорости сейсмических волн растут с глубиной как раз так, как они должны расти за счет роста давления. Рост плотности идет только за счет упругого сжатия под давлением. На долю нижней мантии приходится 47% объема Земли и 41% ее массы. По сейсмическим данным в ней выделяют слои D" и D".

Мантийный слой D". Характеризуется дальнейшим нарастанием скоростей сейсмических колебаний (скорость поперечных упругих волн достигает 10,75-13,68 км/c). На рубеже 660 км скорость сейсмических волн аномально низка и имеет горизонтальные и вертикальные неоднородности. Это связывают с изменением состава мантии (переход минералов рингвудтита и мейжорита в первоскит, магнезиовюстит и оксидные фазы). Большинство исследователей принимает, что нижняя мантия на 70% сложена перовскитом.

Увеличение плотности с глубиной, начиная с 670 км, иногда связывают с увеличением содержания железа, т.е. допускается изменение химического состава мантии. Максимальная вязкость (прочность, добротность) мантийного вещества отмечается на глубине? 2000 км.

Граница раздела. Сама граница между слоями D" и D" выражена с различной чёткостью. На одних участках переход постепенный, на других -- резкий; на одних участках ниже этой границы сейсмические скорости возрастают, на других -- понижаются.

Мантийный слой D". Отличительной особенностью данного слоя является резко выраженная анизотропность. Она проявлена неровностью кровли, соответственно изменчивой мощностью, значительными вариациями сейсмических скоростей в вертикальном и горизонтальном направлениях, наличием в основании слоя зоны ультранизких скоростей.

Очень важное значение имеет открытие в основании слоя зоны низких сейсмических скоростей, обладающей мощностью 20-30 км. Предполагается, что вещество находится здесь в состоянии значительного частичного плавления, что определяет возможность интенсивного массо- и теплообмена между мантией и ядром Земли. Расплавленное железо из мантии стекает в ядро, при этом выделяется огромное количество тепловой энергии и происходит разуплотнение мантии. Мантийный слой D" на 75 % сложен постперовскитом, который устойчив в широком диапазоне термодинамических условий и хорошо объясняет свойства слоя D"

Тепло- и массообмен осуществляются не только непосредственно вдоль границы мантия-ядро (2900 км), но и во всём объёме слоя D", который с одной стороны является местом зарождения масштабных восходящих потоков разогретого разуплотнённого мантийного вещества, а с другой -- местом захоронения погружающихся слэбов океанской литосферы.

Имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы - дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.

Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию - стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см 3 , то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см 3 .

Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.

Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO 2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.

Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO 2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.

Нижняя мантия в пределах глубин 1000-2900 км практически полностью состоит из плотных разновидностей минералов - окислов, о чем свидетельствует ее высокая плотность в пределах 4,08-5,7 г/см 3 . Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.

Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.

Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.

Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру , у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова-Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких и давлениях в пределах глубин 2900-6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.

За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.

Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10-20%) какого-то легкого . Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра - кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.

А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.

Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.

Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.

В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe-FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe-FeS составит 990° С, в то время как чистого железа - 1610°, а пиролита мантии - 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.

Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.

Подводя итог сказанному, можно сделать следующие выводы.

  1. Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
  2. Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
  3. В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.

Задача любой космогонической теории происхождения Земли - объяснить эти основные особенности ее внутренней природы и состава.

Планета, на которой мы живем, третья от Солнца, с естественным спутником - Луной.

Наша планета характеризуется слоевой структурой. Она состоит из твёрдой силикатной оболочки - земной коры, мантии и металлического ядра, внутри твердого, снаружи жидкого.

Граничная зона (поверхность Мохо) отделяет кору Земли от мантии. Она получила свое название в честь югославского сейсмолога А. Мохоровичича, который, изучая балканские землетрясения, установил наличие данного разграничения. Эта зона носит название нижнего рубежа коры земного шара.

Следующий пласт - мантия Земли

Давайте с ним познакомимся. Мантия Земли - это фрагмент, который располагается под корой и почти доходит до сердцевины. Иными словами, это пелена, которая укрывает «сердце» Земли. Это основная составляющая земного шара.

Она состоит из пород, в структуру которых входят силикаты железа, кальция, магния и др. Вообще, ученые полагают, что ее внутреннее содержание схоже по составу с каменными метеоритами (хондритами). В большей степени в мантию земли входят химические элементы, которые пребывают в твердом виде или в твердых химических соединениях: железо, кислород, магний, кремний, кальций, оксиды, калий, натрий и др.

Ее никогда не видел глаз человеческий, но, по мнению ученых, она занимает большую часть объема Земли, порядка 83%, масса ее - почти 70% земного шара.

А также есть предположение, что по направлению к земной сердцевине давление увеличивается, а температура доходит до своего максимума.

Вследствие этого температура мантии Земли измеряется не одной тысячей градусов. При таких обстоятельствах, казалось бы, субстанция мантии должна расплавиться или преобразоваться в газообразное состояние, но этот процесс останавливает сильнейшее давление.

Следовательно, мантия Земли находится в кристаллически-твердом состоянии. Хотя при этом накалена.

Каково же строение мантии Земли?

Геосферу можно охарактеризовать наличием трех слоев. Это верхняя мантия Земли, за ней идет астеносфера, и замыкается ряд нижней мантией.

Мантия состоит из верхней и нижней, первая простирается вширь от 800 до 900 км, вторая имеет ширину 2 тысячи километров. Общая толщина мантии Земли (обоих слоев) равняется приблизительно трем тысячам километров.

Наружный фрагмент расположен под земной корой и входит в литосферу, нижний составляют астеносфера и слой Голицина, для которого характерно увеличение скоростей сейсмических волн.

Согласно гипотезе ученых, верхняя мантия образована прочными породами, поэтому твердая. Но на отрезке от 50 до 250 километров от поверхности земной коры есть не в полной мере расплавленная прослойка - астеносфера. Вещество в этой части мантии напоминает аморфное или полурасплавленное состояние.

Этот слой имеет мягкую пластилиновую структуру, по которому перемещаются твердые слои, находящиеся выше. В связи с этой особенностью эта часть мантии имеет способность течь очень медленно, на несколько десятков миллиметров в год. Но тем не менее это весьма ощутимый процесс на фоне движения земной коры.

Процессы, протекающие внутри мантии, оказывают влияние и прямое воздействие на кору земного шара, вследствие чего происходит движение континентов, горообразование, а человечество сталкивается с такими природными явлениями, как вулканизм, землетрясения.

Литосфера

Верхушка мантии, располагающаяся на жаркой астеносфере, в тандеме с земной корой нашей планеты образует прочный корпус - литосферу. В переводе с греческого языка - камень. Она не является цельной, а состоит из литосферных плит.

Их количество - тринадцать, хотя оно не остается постоянным. Движутся они очень медленно, до шести сантиметров в год.

Их совокупные разнонаправленные движения, которые сопровождаются разломами с образованием бороздок земной коры, носят название тектонические.

Этот процесс активируется за счет постоянной миграции составляющих мантии.

Поэтому происходят вышеупомянутые подземные толчки, существуют вулканы, глубоководные впадины, хребты.

Магматизм

Данное действо можно охарактеризовать как непростой процесс. Его запуск происходит благодаря движениям магмы, имеющей отдельные очаги, расположенные в разных слоях астеносферы.

По причине этого процесса на поверхности Земли мы можем наблюдать извержение магмы. Это всем хорошо известные вулканы.

И ядром из расплавленного железа. Она занимает основную часть Земли, составляя две трети массы планеты. Мантия начинается на глубине около 30 километров и достигает 2900 километров.

Структура Земли

Земля имеет тот же состав элементов, что и (не учитывая водород и гелий, которые улетучились из-за гравитации Земли). Не беря во внимание железо в ядре, мы можем подсчитать, что мантия представляет собой смесь магния, кремния, железа и кислорода, что примерно соответствует по составу минералам.

Но именно то, что смесь минералов присутствует на заданной глубине является сложным вопросом, который не достаточно обоснован. Мы можем получает образцы из мантии, куски пород, поднятые при определенных вулканических извержениях, с глубины около 300 километров, а иногда и гораздо глубже. Они показывают, что самая верхняя часть мантии состоит из перидотита и эклогита. Самое интересное, что мы получаем от мантии - это бриллианты.

Деятельность в мантии

Верхнюю часть мантии медленно перемешивают движения плит, проходящих над ней. Это вызвано двумя видами деятельности. Во-первых, происходит движение подвижных плит вниз, которые скользят друг под другом. Во-вторых, происходит восходящее движение мантийной породы, когда две тектонические плиты расходятся и раздвигаются. Тем не менее, все эти действие не полностью смешивает верхний слой мантии, и геохимики считают верхнюю мантию каменной версией мраморного пирога.

Мировые модели вулканизма отражают действие тектоники плит, за исключением нескольких областей планеты, называемых горячими точками. Горячие точки могут служить ключом к подъему и опусканию материалов гораздо глубже в мантии, возможно, с самого ее основания. В наши дни идет энергичная научная дискуссия о горячих точках планеты.

Изучение мантии с помощью сейсмических волн

Наш самый мощный метод изучения мантии - это мониторинг сейсмических волн от землетрясений в мире. Два разных вида сейсмичесих волн: волны P (аналогичные звуковым волнам) и волны S (например, волны от встряхиваемой веревки) отвечают физическим свойствам породы, через которую они проходят. Сейсмические волны отражают некоторые типы поверхностей и преломляют (изгибают) другие типы поверхностей, когда наносят по ним удар. Ученые используют эти эффекты для определения внутренних поверхностей Земли.

Наши инструменты достаточно хороши, чтобы рассматривать мантию Земли так, как врачи делают ультразвуковые снимки своих пациентов. После столетия сбора данных о землетрясениях мы можем сделать несколько впечатляющих карт мантии.

Моделирование мантии в лаборатории

Минералы и породы меняются под высоким давлением. Например, общий мантийный минерал - оливин преобразовывается в различные кристаллические формы на глубинах около 410 километров и снова на 660 километрах.

Изучение поведения минералов в условиях мантии происходит двумя способами: компьютерное моделирование, основанное на уравнениях физики минералов и лабораторных экспериментах. Таким образом, современные исследования мантии проводятся сейсмологами, программистами и лабораторными исследователями, которые теперь могут воспроизводить условия в любом месте мантии с помощью лабораторного оборудования под высоким давлением, такого как ячейка с алмазной наковальней.

Слои мантии и внутренние границы

Столетие исследований позволило заполнить некоторые пробелы в знаниях о мантии. Она имеет три основных слоя. Верхняя мантия простирается от основания коры (Мохоровичича) до глубины 660 километров. Переходная зона расположена между 410 и 660 километрами, где происходят значительные физические изменения минералов.

Нижняя мантия простирается от 660 до примерно 2700 километров. Здесь сейсмические волны сильно приглушены, и большинство исследователей считают, что породы под ними различны по химическому составу, а не только по кристаллографии. И последний спорный слой на дне мантии имеет толщину около 200 километров и является границей между ядром и мантией.

Почему мантия Земли особенная

Поскольку мантия является основной частью Земли, ее история имеет фундаментальное значение для . Мантия сформировалась во время рождения Земли, как океан жидкой магмы на железном ядре. Поскольку она затвердевала, элементы, которые не вписывались в основные минералы, собрались в виде накипи на вершине коры. Затем, мантия начала медленную циркуляцию, которую продолжает последние 4 миллиарда лет. Верхняя часть мантии начала охлаждаться, потому что она перемешивалась и гидратировалась тектоническими движениями поверхностных плит.

В то же время мы многое узнали о структуре других (Меркурия, Венеры и Марса). По сравнению с ними, у Земли есть активная смазанная мантия, которая является особенной благодаря тому же элементу, который отличает ее поверхность: воде.

Включайся в дискуссию
Читайте также
Шкала измерений в социологии Статистические методы в психологии
Ортогональная система векторов Ортогональная система векторов
Несколько слов о стихотворениях Ф